Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T22:44:22.930Z Has data issue: false hasContentIssue false

The tidal rhythm and action of the digestive system of the lamellibranch Lasaea rubra

Published online by Cambridge University Press:  11 May 2009

J. E. Morton
Affiliation:
Department of Zoology, Queen Mary College, University of London

Extract

It has been well established that some of the features of the feeding and digestive process in molluscs are rhythmic in character. Notably Hirsch (1915, 1917, 1931) has demonstrated a rhythmic periodicity of secretion in the salivary glands and digestive glands of some carnivorous Gastropoda, and Krijgsman (1925, 1928) has done similar work on the land pulmonate Helix. In all of these animals—and in cephalopods, too, where there is a more elaborate nervous control of secretion—discontinuous feeding is the rule. In the other and perhaps larger category of molluscs—those continuously feeding on fine particles—the central mechanism of the gut is the crystalline style, or its forerunner the protostyle. Here the need is, in Yonge's words (1937), ‘to the extent to which they depend on extracellular enzymes for digestion, continuous secretion’. In Yonge's view, now classical, the style was regarded as ‘an ideal mechanism for the continuous liberation of small quantities of an amylolytic enzyme’. Graham (1939), in his work on style-bearing gastropods, showed that the style is in general confined to animals with a continuous feeding habit, whether by ciliary means or by using the radula to graze on and rasp off fine particles. It is known that style secretion stops and the style is frequentiy dissolved when animals are removed from the water and cease feeding (see Yonge, 1925).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1956

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, J. R., 1942. The free border of the intestinal epithelial cell of vertebrates. Quart. J. micr. Sci., Vol. 84, pp. 73103.Google Scholar
Ballantine, D. & Morton, J. E., 1956. Filtering, feeding and digestion in the lamellibranch, Lasaea rubra. J. mar. biol. Ass. U.K., Vol. 35, pp. 241–74.CrossRefGoogle Scholar
Barrington, E. J. W., 1951. The specific granules of the pancreatic islet tissue of the frog (Rana temporaria). Quart. J. micr. Sci., Vol. 92, pp. 205–20.Google Scholar
Dunn, R. C. & Thompson, E. G., 1945. A new hemoglobin stain for histologic use: a slightly modified Van Gieson stain. Arch. Path. (Lab. Med.), Vol. 39, pp. 4950.Google Scholar
Fretter, V., 1939. The structure and function of the alimentary canal of some tectibranch molluscs, with a note on excretion. Trans. roy. Soc. Edinb., vol. 59, pp. 599646.CrossRefGoogle Scholar
Graham, A., 1938. The structure and function of the alimentary canal of aeoliid molluscs, with a discussion on their nematocysts. Trans. roy. Soc. Edinb., Vol. 59, pp. 267307.CrossRefGoogle Scholar
Graham, A., 1939. On the structure of the alimentary canal in the style-bearing prosobranchs. Proc. zool. Soc. Lond., B, Vol. 109, pp. 75112.CrossRefGoogle Scholar
Heilbron, I. M., 1942. Some aspects of algal chemistry. J. chem. Soc., pp. 7989.CrossRefGoogle Scholar
Hirsch, G. C., 1915. Ernährungsbiologie fleischfressender Gastropoden. I. Zool. Jb. (Abt. Physiol.), Bd. 35, p. 357.Google Scholar
Hirsch, G. C., 1917. Ernährungsbiologie fleischfressender Gastropoden. II. Zool. Jb. (Abt. Physiol), Bd. 36.Google Scholar
Hirsch, G. C., 1931. The theory of fields of restitution with special reference to the phenomena of secretion. Biol. Rev., Vol. 6, pp. 88131.CrossRefGoogle Scholar
Hirsch, G. C. & Jacobs, W., 1928. Der Arbeitsrhythmus der Mitteldarmdrüse von Astacus leptodactylus. I. Teil: Methodik und Technik. Der Beweis der Periodizität. Z. vergl. Physiol., Bd. 8, pp. 102–44.CrossRefGoogle Scholar
Hirsch, G. C. & Jacobs, W., 1930. Der Arbeitsrhythmus der Mitteldarmdrüse von Astacus leptodactylus. II. Teil: Wachstum als primärer Faktor des Rhythmus eines polyphasischen organigen. Sekretionssystems. Z. vergl. Physiol., Bd. 12, pp. 524–78.CrossRefGoogle Scholar
Jacobs, W., 1928. Untersuchungen über die Cytologie der Secretbildung in der Mitteldarmdrüse von Astacus leptodactylus. Z. Zellforsch. Bd. 8, pp. 162.CrossRefGoogle Scholar
Krijgsman, B. J., 1925. Arbeitsrhythmus der Verdauungsdrüsen bei Helix pomatia. I. Teil: die natürlichen Bedingungen. Z. vergl. Physiol., Bd. 2, pp. 264–96.CrossRefGoogle Scholar
Krijgsman, B. J., 1928. Arbeitsrhythmus der Verdauungsdrüssen bei Helix pomatia. II. Teil: Sekretion, Resorption und Phagocytose. J. vergl. Physiol., Bd. 8, pp. 187280.CrossRefGoogle Scholar
Millott, N., 1937. On the morphology of the alimentary canal, process of feeding, and physiology of digestion of the nudibrancha mollusc. Jorunna tomentosa (Cuvier). Phil. Trans., B, Vol. 228, pp. 173217.Google Scholar
Morton, J. E., 1951. The ecology and digestive system of the Struthiolarüdae. Quart. J. micr. Sci., Vol. 92, pp. 125.Google Scholar
Morton, J. E., 1952. The role of the crystalline style. Proc. malacol. Soc. Lond., Vol. 29, pp. 8592.Google Scholar
Morton, J. E., 1955a. The functional morphology of the British Ellobiidae (Gastropoda Pulmonata) with special reference to the digestive and reproductive systems. Phil. Trans., B, Vol. 239, pp. 89160.Google Scholar
Morton, J. E., 1955b. The functional morphology of Otina otis, a primitive marine pulmonate. J. mar. biol. Ass. U.K., Vol. 34, pp. 113–50.CrossRefGoogle Scholar
Oldfield, E., 1955. Observations of the anatomy and mode of life of Lasaea rubra (Montagu) and Turtonia minuta (Fabricius). Proc. malacol. Soc. Lond., Vol. 31, pp. 226–49.Google Scholar
Orton, J. H., 1923. An account of investigations into the cause or causes of the unusual mortality among oysters in the English oyster beds during 1920 and 1921. Part I. Report. Fish. Invest. Lond., Ser. 3, Vol. 6, No. 3, 199 pp.Google Scholar
Owen, G., 1955. Observations on the stomach and digestive diverticula of the Lamellibranchia. I. The Anisomyaria and Eulamellibranchia. Quart. J. micr. Soc, Vol. 96, pp. 517–37.Google Scholar
Potts, F. A., 1923. The structure and function of the liver of Teredo, the Shipworm. Proc. Camb. phil. Soc. (Biol. Sci.), Vol. 1, pp. 117.Google Scholar
Strain, H. H., Manning, W. M. & Hardin, G., 1944. Xanthophylls and carotens of diatoms, brown algae, dinoflagellates and sea-anemones. Biol. Bull., Woods Hole, Vol. 86, pp. 169–91.CrossRefGoogle Scholar
Yonge, C. M., 1924. Studies in the comparative physiology of digestion. II. Mechanism of feeding, digestion and assimilation in Nephrops norvegicus. Brit. J. exp. Biol., Vol. 1, pp. 343–89.CrossRefGoogle Scholar
Yonge, C. M., 1925. The hydrogen ion concentration in the gut of certain lamellibranchs and gastropods. J. mar. biol. Ass. U.K., Vol. 13, pp. 938–52.CrossRefGoogle Scholar
Yonge, C. M., 1926a. The digestive diverticula in the lamellibranchs. Trans, roy. Soc. Edinb., Vol. 54, pp. 703–18.CrossRefGoogle Scholar
Yonge, C. M., 1926b. Structure and physiology of the organs of feeding and digestion in Ostrea edulis. J. mar. biol. Ass. U.K., Vol. 14, pp. 295386.CrossRefGoogle Scholar
Yonge, C. M., 1937. Evolution and adaptation in the digestive system of the Metazoa. Biol. Rev., Vol. 12, pp. 87115.CrossRefGoogle Scholar
Yonge, C. M., 1949. On the structure and adaptations of the Tellinacea, deposit-feeding Eulamellibranchia. Phil. Trans., B, Vol. 234, pp. 2976.Google Scholar