Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T22:58:34.110Z Has data issue: false hasContentIssue false

Tentacular ultrastructure and feeding behaviour of Neopentadactyla mixta (Holothuroidea: Dendrochirota)

Published online by Cambridge University Press:  16 October 2009

Timothy B. Smith
Affiliation:
Department of Zoology, University College, Galway, Republic of Ireland

Abstract

Suspension-feeding in the holothurian Neopentadactyla mixta (Östergren), 1898 is accomplished by an adhesive secretion synthesized in modified retractable discs of epithelial cells located on the terminal tentacular nodes. Besides secretory cells, each disc epithelium is composed of three other cell types: ciliated, granular and nerve cells. The fine structure and possible functions of the epithelium are described with reference to the behaviour of tentacles during feeding and the observations are compared with existing information on holothuroid feeding mechanisms.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, R. D., 1980. Invertebrate Zoology. 1089 pp. London: W. B. Saunders.Google Scholar
Bedini, C. E., Ferrero, E. & Lanfranchi, W., 1973. The ultrastructure of ciliary sensory cells in the turbellaria acoela. Tissue and Cell, 5, 359372.CrossRefGoogle ScholarPubMed
Bonar, D. B., 1978. Ultrastructure of cephalic sensory organ in larvae of the gastropod Phestilla sibogae (Aeolidacea, Nudibranchia). Tissue and Cell, 10, 153165.CrossRefGoogle Scholar
Brumbaugh, J. H., 1965. The Anatomy, Diet, and Tentacular Feeding Mechanism of the Dendrochirote Holothurian Cucumaria curata (Ccwles 1907). Ph.D. Thesis, Stanford University.Google Scholar
Bullock, T. H. & Horridge, G. A., 1965. Structure and Function of the Nervous System of Invertebrates, vol. 1, pp. 1798; vol. 2, pp. 801–1719. San Francisco: W. H. Freeman.Google Scholar
Burke, R. D., 1980. Podial sensory receptors and the induction of metamorphosis in echinoids. Journal of Experimental Marine Biology and Ecology, 47, 223234.CrossRefGoogle Scholar
Fankboner, P. V., 1978. Suspension-feeding mechanisms of the armoured sea cucumber Psolus chitinoides Clark. Journal of Experimental Marine Biology and Ecology 31, 1125.CrossRefGoogle Scholar
Fankboner, P. V., 1981. A re-examination of mucus feeding by the sea cucumber Leptopentacta ( = Cucumaria) elongata. Journal of the Marine Biological Association of the United Kingdom, 61, 679683.CrossRefGoogle Scholar
Fish, J. D., 1967. The biology of Cucumaria elongata (Echinodermata: Holothuroidea). Journal of the Marine Biological Association of the United Kingdom, 47, 129144.CrossRefGoogle Scholar
Florey, E. & Cahill, M. A., 1977. Ultrastructure of sea urchin tube feet. Cell and Tissue Research, 177, 195214.CrossRefGoogle ScholarPubMed
Hyman, L. H., 1955. The Invertebrates, vol. IV. Echinodermata. The Coelomate Bilateria. vii, 763 pp. New York: McGraw-Hill.Google Scholar
Keegan, B. F., 1974. The macrofauna of maerl substrates on the west coast of Ireland. Cahiers de biologie marine 15, 513530.Google Scholar
Konnecker, G. & Keegan, B. F., 1973. In situ behavioural studies on echinoderm aggregations. 1. Pseudocumis mixta. Helgoldänder wissenschaftliche Meeresuntersuchungen, 24, 157162.CrossRefGoogle Scholar
Laverack, M. S., 1968. On superficial receptors. In Invertebrate Receptors (ed. Carthy, J. D. and Newell, G. E.), pp. 299326. London: Academic Press.Google Scholar
Laverack, M. S., 1974. Structure and function of chemoreceptor cells. In Chemoreception in Marine Organisms (ed. Grant, P. T. and Mackie, A. M.), pp. 148. London: Academic Press.Google Scholar
Leise, E. M. & Cloney, R. A., 1982. Chiton integument: ultrastructure of the sensory hairs of Mopalia muscosa (Mollusca: Polyplacophora). Cell and Tissue Research, 223, 4359.CrossRefGoogle ScholarPubMed
Macginitie, G. E. & Macginitie, N., 1949. Natural History of Marine Animals. 473 pp. New York: McGraw-Hill.Google Scholar
Mortensen, T., 1927. Handbook of the Echinoderms of the British Isles. 471 pp. Oxford University Press.CrossRefGoogle Scholar
Pawson, D. L., 1966. Ecology of holothurians. In Physiology of Echinodermata (ed. Boolootian, R. A.), pp. 6371. Interscience.Google Scholar
Pentreath, V. W. & Cobb, J. L. S., 1972. Neurobiology of Echinodermata. Biological Reviews, 47, 363392.CrossRefGoogle ScholarPubMed
Reese, E. S., 1966. The complex behaviour of echinoderms. In Physiology of Echinodermata (ed. Boolootian, R. A.), pp. 157218. Interscience.Google Scholar
Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology, 17, 208212.CrossRefGoogle ScholarPubMed
Roberts, D. & Bryce, C., 1982. Further observations on the tentacular feeding mechanisms in holothurians. Journal of Experimental Marine Biology and Ecology, 59, 151163.CrossRefGoogle Scholar
Slautterback, D. B., 1963. Cytoplasmic microtubules. I. Hydra. Journal of Cell Biology 18, 367388.CrossRefGoogle ScholarPubMed
Smith, T. B., 1981. Feeding and Aspects of the Nutritional Biology of the Holothurian Neopentadactyla mixta (östergren), 1898 and the Ectoparasitic Gastropod Melanella alba Bovidich, 1822. Ph.D. Thesis, University College, Galway.Google Scholar