Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-20T23:30:12.707Z Has data issue: false hasContentIssue false

Swimming and body orientation of Notolepis rissoi in relation to lateral line and visual function

Published online by Cambridge University Press:  11 May 2009

John Janssen
Affiliation:
Biology Department, Loyola University, 6525 North Sheridan, Chicago, Illinois 60626, USA.
Neville W. Pankhurst
Affiliation:
Leigh Marine Laboratory, University of Auckland, Private Bag, Auckland, New Zealand.
G. Richard Harbison
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

Extract

When observed from a submersible, the mesopelagic paralepidid Notolepis rissoi (Pisces: Paralepididae) will hover head up with the body at about 45°. The fish's swimming motion is restricted to the extreme caudal region with most of the body rigid. The trunk lateral-line canal ends at about the position that caudal motion becomes noticeable and there is a great decrease in neuromast size near the posterior end of the canal. The size of the neuromasts is also inversely related to the percentage of red muscle at the same body level. The eyes have an aphakic space oriented dorso-anteriorly at about 45° to the body axis so that during hovering the aphakic space is oriented vertically. Retinal anatomy indicates that photoreceptors opposite the aphakic space appear to enhance resolution at the cost of sensitivity, whilst lateral photoreceptors enhance sensitivity at the expense of resolution. We interpret the swimming attitude and mechanics as adaptations to minimize self-induced oscillations which would be deleterious to visual and lateral-line function.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barham, E.G., 1971. Deep sea fishes: lethargy and vertical orientation. In Proceedings of an International Symposium on biological sound scattering in the ocean (ed. G.B., Farquhar), pp. 100118. Washington, DC: US Government Printing Office.Google Scholar
Bone, Q., 1971. On the scabbard fish Aphanopus carbo. Journal of the Marine Biological Association of the United Kingdom, 51, 219225.CrossRefGoogle Scholar
Coombs, S. & Janssen, J., 1989. Peripheral processing by the lateral line system of the mottled sculpin (Cottus bairdi). In The mechanosensory lateral line: neurobiology and evolution (ed. S., Coombset al.), pp. 299319. New York: Springer-Verlag.CrossRefGoogle Scholar
Coombs, S. & Janssen, J., 1990. Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. Journal of Comparative Physiology, 167A, 557567.Google ScholarPubMed
Denton, E.J. & Gray, J.A.B., 1988. Mechanical factors in the excitation of the lateral lines of fishes. In Sensory biology of aquatic animals (ed. J., Atemaet al.), pp. 595617. New York: Springer-Verlag.CrossRefGoogle Scholar
Easter, S.S. Jr, Johns, P.R. & Heckenlively, D., 1974. Horizontal compensatory eye movements in goldfish (Carassius auratus). I. The normal animal. Journal of Comparative Physiology, 92, 2335.CrossRefGoogle Scholar
Eaton, R.C. & Hackett, J.T., 1984. The role of the Mauthner cell in fast starts. In Neural mechanisms of startle behavior (ed. R.C., Eaton), pp. 213266. New York: Plenum.CrossRefGoogle Scholar
Gerritsen, J., 1980. Adaptive responses to encounter problems. In Evolution and ecology of zooplankton communities (ed. W.C., Kerfoot), pp. 5262. Hanover, New Hampshire: University Press of New England.Google Scholar
Gill, H.S., Weatherley, A.H., Lee, R. & Legere, D., 1989. Histochemical characterization of myotomal muscle of five teleost species. Journal of Fish Biology, 34, 375386.CrossRefGoogle Scholar
Greer-Walker, M. & Pull, G. A., 1975. A survey of red and white muscle in marine fish. Journal of Fish Biology, 7, 295300.CrossRefGoogle Scholar
Hoekstra, D. & Janssen, J., 1986. Lateral line receptivity of the mottled sculpin (Cottus bairdi). Copeia, 1986, 9196.CrossRefGoogle Scholar
Janssen, J., Coombs, S., Hoekstra, D. & Platt, C, 1987. Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behavior and Evolution, 30, 210229.Google ScholarPubMed
Janssen, J., Harbison, G.R. & Craddock, J.E., 1986. Hatchetfishes hold horizontal attitudes during diagonal descents. Journal of the Marine Biological Association of the United Kingdom, 66, 825833.CrossRefGoogle Scholar
Kawamura, G. & Ohashi, S., 1988. The habit of cutlassfish as inferred from the retina. Nippon Suisan Gakkaishi, 54, 889.CrossRefGoogle Scholar
Locket, N.A., 1977. Adaptations to the deep-sea environment. In Handbook of sensory physiology. Vol. 7, part 5. The visual system in vertebrates (ed. F., Crescitelli), pp. 67192. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Marshall, N.B., 1971. Explorations in the life of fishes. Cambridge, Massachusetts: Harvard University Press.CrossRefGoogle Scholar
Montgomery, J.C., 1989. Lateral line detection of planktonic prey. In The mechanosensory lateral line (ed. S., Coombset al.), pp. 561574. New York: Springer-Verlag.CrossRefGoogle Scholar
Montgomery, J.C. & Saunders, A.J., 1985. Functional morphology of the piper Hyporhamphus ihi with reference to the role of the lateral line in feeding. Proceedings of the Royal Society of London B, 224, 197208.Google Scholar
Munk, O., 1989. Duplex retina in the mesopelagic deep-sea teleost Lestidiops affinis (Ege, 1930). Acta Zoologica, 70, 143149.CrossRefGoogle Scholar
Pankhurst, N. W., 1987. Intra- and interspecific changes in retinal morphology among mesopelagic and demersal teleosts from the slope waters of New Zealand. Environmental Biology of Fishes, 19, 269280.CrossRefGoogle Scholar
Pankhurst, N.W., 1989. The relationship of ocular morphology to feeding modes and activity periods in shallow water marine teleosts from New Zealand. Environmental Biology of Fishes, 26, 201211.CrossRefGoogle Scholar
Pérès, J.-M., Picard, J. & Ruivo, M., 1957. Résultats de la campagne de recherches du bathyscaphe F.N.R.S. III. Bulletin de l'Institut Océanographique, Monaco, no. 1092, 28 pp.Google Scholar
Post, A., 1984. Paralepididae. In Fishes of the northeastern Atlantic and the Mediterranean, vol. 1 (ed. P.J.P., Whiteheadet al.), pp. 498508. Paris: Unesco.Google Scholar
Rofen, R.R., 1966a. Family Paralepididae. In Fishes of the western North Atlantic, no. 1, part 5 (ed. Y.H., Olsen and J.W., Atz), pp. 205481. New Haven, Connecticut: Sears Foundation for Marine Research.Google Scholar
Rofen, R.R., 1966b. Family Anotopteridae. In Fishes of the western North Atlantic, no. 1, part 5 (ed. Y.H., Olsen and J.W., Atz), pp. 498510. New Haven, Connecticut: Sears Foundation for Marine Research.Google Scholar
Scott, W.B. & Scott, M.G., 1988. Atlantic fishes of Canada. Toronto: University of Toronto Press.Google Scholar
Tamura, T. & Wisby, W.J., 1963. The visual sense of pelagic fishes especially the visual axis and accommodation. Bulletin of Marine Science of the Gulf and Caribbean, 13, 433448.Google Scholar
Trégouboff, G., 1956. Prospection biologique sous-marine dans la région de Villefranche-sur-Mer en juin 1956. Bulletin de l'Institut Océanographique, Monaco, no. 1085, 24 pp.Google Scholar
Trégouboff, G., 1958. Prospection biologique sous-marine dans la région de Villefranche-sur-Mer au cours de l'année 1957. I. Plongées en bathyscaphe. Bulletin de l'Institut Océanographique, Monaco, no. 1117, 37 pp.Google Scholar
Welch, D.W., Margolis, L., Henderson, M.A. & McKinnell, S., 1991. Evidence for attacks by the bathypelagic fish Anotopterus pharao (Myctophiformes) on Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences, 48, 24032407.CrossRefGoogle Scholar