Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T14:48:22.908Z Has data issue: false hasContentIssue false

Stylet (vestigial shell) size in Octopus vulgaris (Cephalopoda) hatchlings used to determine stylet nucleus in adults

Published online by Cambridge University Press:  08 May 2015

Sílvia Lourenço*
Affiliation:
MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, I.P.Avenida de Brasília, 1449-006, Lisboa, Portugal Instituto de Investigaciones Marinas de Vigo, CSIC, C/Eduardo Cabello, 6. Vigo. E-36208, Spain
Ana Moreno
Affiliation:
Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, I.P.Avenida de Brasília, 1449-006, Lisboa, Portugal
Luís Narciso
Affiliation:
MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal
João Pereira
Affiliation:
Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, I.P.Avenida de Brasília, 1449-006, Lisboa, Portugal
Rui Rosa
Affiliation:
MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal
Ángel F. González
Affiliation:
Instituto de Investigaciones Marinas de Vigo, CSIC, C/Eduardo Cabello, 6. Vigo. E-36208, Spain
*
Correspondence should be addressed to: S. Lourenço, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal email: [email protected]

Abstract

The estimation of age and growth of cephalopod stocks is a key issue for their sustainable management. Recently, several studies have successfully validated the daily deposition of growth rings in the vestigial shell or stylets of several octopus species. Octopus vulgaris eggs were incubated at two different temperatures, 18 and 22°C, until hatching to determine stylet size at hatching and assess the effect of temperature in the stylet dimensions. The 3-day-old hatchlings were sectioned transversally and 6 μm sections were stained to enhance the stylet position and visibility. The sections were observed under transmitted light microscopy at a magnification of 1000×, and the stylets identified as blue/green structures inside the mantle–funnel retractor muscle. The transversal sections of the whole paralarvae allowed the diameter of the embryonic stylet of an octopus species to be measured for the first time. The mean stylet diameter in 3-day-old paralarvae is 3.99 μm independently of the thermal conditions. Moreover, significant differences in stylet size between captive and wild paralarvae were observed; the latter showed significantly larger stylets, an indication that they are over 3 days old. Our results also indicate that the stylet nucleus is much smaller than previously thought based on measurements in stylets of juveniles and adults.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barratt, I.M. and Allcock, A.L. (2010) Ageing octopods from stylets: development of a technique for permanent preparations. ICES Journal of Marine Science 67, 14521457.CrossRefGoogle Scholar
Bizikov, V.A. (2004) The shell in Vampyropoda (Cephalopoda): morphology, functional role and evolution. Ruthenica suppl. 3, 188.Google Scholar
Budelmann, B.U., Schipp, R. and Boletzky, V.S. (1997) Cephalopoda. In Harrison, F.W. and Kohn, A.J. (eds) Microscopic anatomy of invertebrates. Volume 6A: Mollusca II. Chichester: Wiley, pp. 119414.Google Scholar
Campana, S.E. (1992) Measurement and interpretation of the microstructure of fish otoliths. In Stevenson, D. and Campana, S.E. (eds) Otolith microstructure examination and analysis. Canadian Special Publication of Fisheries and Aquatic Sciences 117, 5972.Google Scholar
Campana, S.E. (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197242.CrossRefGoogle Scholar
Canali, E., Ponte, G., Belcari, P., Rocha, F. and Fiorito, G. (2011) Evaluating age in Octopus vulgaris: estimation, validation and seasonal differences. Marine Ecology Progress Series 441, 141149.CrossRefGoogle Scholar
Domain, F., Jouffre, D. and Caveriviére, A. (2000) Growth of Octopus vulgaris from tagging in Senegalese waters. Journal of the Marine Biological Association of the United Kingdom 80, 699705.CrossRefGoogle Scholar
Doubleday, Z., Semmens, J.M., Pecl, G. and Jackson, G. (2006) Assessing the validity of stylets as ageing tools in Octopus pallidus. Journal of Experimental Marine Biology and Ecology 338, 3542.CrossRefGoogle Scholar
Doubleday, Z.A., White, J., Pecl, G.T. and Semmens, J.M. (2011) Age determination in merobenthic octopuses using stylet increment analysis: assessing future challenges using Macroctopus maorum as a model. ICES Journal of Marine Science 68, 20592063.CrossRefGoogle Scholar
Goto, T. (2005) Examination of different preservative for Todarodes pacificus paralarvae fixed with borax-buffered formalin-seawater solution. Phuket Marine Biological Center Research Bulletin 6, 213219.Google Scholar
Hermosilla, C.A., Rocha, F., Fiorito, G., González, A.F. and Guerra, A. (2010) Age validation in common octopus Octopus vulgaris using stylet increment analysis. ICES: Journal of Marine Science 67, 14581463.CrossRefGoogle Scholar
Herwig, J.N., Depczynski, M., Roberts, J.D., Semmens, J.M., Gagliano, M. and Heyward, A.J. (2012) Using age-based life history data to investigate the life cycle and vulnerability of Octopus cyanea. PLoS ONE 7, e43679.CrossRefGoogle ScholarPubMed
INE (2013). Statistics Portugal. http://www.ine.pt.Google Scholar
Jones, L. (2002) Connective tissues and stains. In Bancroft, J.D. and Gamble, M. (eds) Theory and practice of histological techniques, 6th edn. Edinburgh: Churchill Livingstone, pp. 139162.Google Scholar
Katsanevakis, S. and Verriopoulos, G. (2006) Seasonal population dynamics of Octopus vulgaris in the eastern Mediterranean. ICES Journal of Marine Science 63, 151160.CrossRefGoogle Scholar
Leporati, S.C., Semmens, J.M. and Pecl, G. (2008) Determining the age and growth of wild octopus using stylet increment analysis. Marine Ecology Progress Series 367, 213222.CrossRefGoogle Scholar
Lourenço, S. (2014) Ecology of the common octopus Octopus vulgaris (Cuvier, 1797) in the Atlantic Iberian Coast: life cycle strategies under different oceanographic regimes. PhD Thesis, Faculdade de Ciencias da Universidade de Lisboa, Lisboa, Portugal.Google Scholar
Mangold, K. (1983) Octopus vulgaris. In Boyle, P. (ed) Cephalopod life cycle: species accounts. Volume 1. London: Academic Press, pp. 335363.Google Scholar
Naef, A. (1928) Die Cephalopoden. Embryologie. Fauna Flora Golf Neapel 35, 1–357. English translation by Boletzky, S. V. 2001. The Cephalopoda-Embryology. Washington, DC: Smithsonian Institution Press.Google Scholar
Otero, J., Rocha, F., González, A.F., Garcia, J. and Guerra, A. (2005) Modeling artisanal coastal fisheries of Galicia (NW Spain) based on data obtained from fishers: the case of Octopus vulgaris. Scientia Marina 69, 577585.CrossRefGoogle Scholar
Panfili, J., de Pontual, H., Toradec, H. and Wright, P.J. (2002). Manual of fish sclerochronology. Brest: IFREMER–IRD.Google Scholar
Perales-Raya, C., Bartolomé, A., García-Santamaría, M.T., Pascual-Alayón, P. and Almansa, E. (2010) Age estimation obtained from analysis of octopus (Octopus vulgaris Cuvier, 1797) beaks: improvements and comparisons. Fisheries Research 106, 171176.CrossRefGoogle Scholar
Repolho, T., Baptista, M., Pimentel, M.S., Dionisio, G., Trübenbach, K., Lopes, V.M., Lopes, A.R., Calado, R., Diniz, M. and Rosa, R. (2014). Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming. Journal of Comparative Physiology B 184, 5564.CrossRefGoogle ScholarPubMed
Roura, A. (2013) Ecology of planktonic cephalopod paralarvae in coastal upwelling systems. PhD Thesis, Universidade de Vigo, Vigo, Spain.Google Scholar
Semmens, J., Doubleday, Z., Hoyle, K. and Pecl, G. (2011) A multilevel approach to examining cephalopod growth using Octopus pallidus as a model. Journal of Experimental Biology 214, 27992807.CrossRefGoogle ScholarPubMed
Sousa Reis, C. and Fernandes, R. (2002) Growth observations on Octopus vulgaris Cuvier, 1797 from the Portuguese waters: growth lines in the vestigial shell as possible tools for age determination. Bulletin of Marine Science 71, 10991103.Google Scholar
Vecchione, M. (1991) A method for examining the structure and contents of digestive tract in paralarval squids. Bulletin of Marine Science 49, 300308.Google Scholar
Villanueva, R. (1995) Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Canadian Journal of Fisheries and Aquatic Science 52, 26392650.CrossRefGoogle Scholar
Villanueva, R. and Norman, M.D. (2008) Biology of the planktonic stages of benthic octopuses. Oceanography and Marine Biology – An Annual Review 46, 105202.Google Scholar