Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T18:01:49.390Z Has data issue: false hasContentIssue false

A study of a marine benthic community with special reference to the micro-organisms

Published online by Cambridge University Press:  11 May 2009

Molly F. Mare
Affiliation:
Research Fellow of Newnham College, Cambridge

Extract

An attempt has been made to deal briefly but quantitatively with all size groups of the fauna and flora in a marine mud deposit.

It has been necessary to propose the following new terminology: the Macrobenthos, which is here equivalent to the macrofauna, the Meiobenthos, under which term are included copepods, nematodes, foraminifera, etc., and the Microbenthos, comprising the rest of the protozoa, bacteria, bottom diatoms and other algae; planktonic diatoms and coloured flagellates also occur on the bottom in the region investigated but are not regarded as true microbenthos.

A quantitative ecological study of the microbenthos has been started and the habitat is first described, stress being laid on points of importance to the microorganisms.

The census method for bacteria was an agar-plate method and that for the protozoa and diatoms was a dilution culture method modified from that used by soil microbiologists.

These methods give minimal values for the total population and may safely be used for comparative purposes. The results are still tentative.

Typical figures for the minimal numbers and volumes of living protoplasm per gram of dry mud in the top ½ cm. layer are given in Tables I-IV.

The surface layer is much richer in all types of organisms than is the mud deeper in the cores. There is considerable local horizontal variation in numbers of bacteria and protozoa, suggesting dense aggregations.

Diatoms contribute by far the greatest bulk to the total volume of living micro-organisms; planktonic diatoms, particularly during the summer, completely outweigh the true microbenthos.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. Q., 1939. Distribution of organic matter in marine sediments and its availability to further decomposition. Journ. Mar. Research, Vol. II, p. 225–35.Google Scholar
Baier, C. R., 1935. Studien zur Hydrobakteriologie stehender Binnengewässer. Archiv Hydrobiol., Bd. XXIX, pp. 183264.Google Scholar
Blegvad, H., 1914. Food and conditions of nourishment among the communities of invertebrate animals found on or in the sea bottom in Danish waters. Rep. Dan. Biol. Stat., Vol. XXII, pp. 4178.Google Scholar
Bornebusch, C. H., 1930. The fauna of forest soils. Forstliche Versuchswesen in Dänemark, Bd. XI.Google Scholar
Boysen, Jensen P., 1914. Studies concerning the organic matter of the sea bottom. Rep. Dan. Biol. Stat., Vol. XXII, pp. 139.Google Scholar
Boysen, Jensen P., 1919. Valuation of the Limfjord I. Rep. Dan. Biol. Stat., Vol. XXVI, pp. 144.Google Scholar
Cook, R. P. & Haldane, J. B. S., 1931. The respiration of B. coli communis. Biochem. Journ., Vol. XXV, pp. 880–7.CrossRefGoogle Scholar
Cutler, D. W., 1920. A method for estimating the numbers of active protozoa in the soil. Journ. Agric. Sci., Vol. X, pp. 135–43.CrossRefGoogle Scholar
Cutler, D. W. & Crump, L. M., 1924. The rate of reproduction in artificial culture of Colpidium colpoda. Part III. Biochem. Journ., Vol. XVIII, pp. 905–12.CrossRefGoogle Scholar
Cutler, D. W., 1929. Carbon dioxide production in sands and soils in the presence and absence of amoebae. Ann. Appl. Biol., Vol. XVI, pp. 472–82.CrossRefGoogle Scholar
Cutler, D. W., Crump, L. M. & Sandon, H., 1922. A quantitative investigation of the bacterial and protozoan population of the soil with an account of the protozoan fauna. Phil. Trans. Roy. Soc., B, Vol. 211, pp. 317–50.Google Scholar
Deevey, E. S. Jr, 1941. Limnological studies in Connecticut. VI. The quantity and composition of the bottom fauna of thirty-six Connecticut and New York Lakes. Ecol. Monogr., Vol. 11, pp. 413–55.CrossRefGoogle Scholar
Ford, E., 1923. Animal communities of the level sea bottom in the waters adjacent to Plymouth. Journ. Mar. Biol. Assoc., Vol. XIII, pp. 164224.CrossRefGoogle Scholar
Fox, D. L., 1937. Carotenoids and other lipoid soluble pigments in the sea and deep marine muds. Proc. Nation. Acad. Sci. U.S.A., Vol. 23, pp. 295301.CrossRefGoogle Scholar
Gardiner, A. C., 1937. Phosphate production by planktonic animals. Journ. Cons. Int. Explor. Mer., Vol. XII, pp. 144–6.CrossRefGoogle Scholar
Gause, G. F., 1934. The Struggle for Existence.CrossRefGoogle Scholar
Griessmann, K., 1914. Über marine Flagellaten. Archiv f. Protistenk., Bd. 33, pp. 178.Google Scholar
Gross, F., 1937. Notes on the culture of some marine plankton organisms. Journ. Mar. Biol. Assoc., Vol. XXI, pp. 753–68.CrossRefGoogle Scholar
Harvey, H. W., 1939. Substances controlling the growth of a diatom. Journ. Mar. Biol. Assoc., Vol. XXIII, pp. 499520.CrossRefGoogle Scholar
Harvey, H. W., 1940. Nitrogen and phosphorus required for the growth of phytoplankton. Journ. Mar. Biol. Assoc., Vol. XXIV, pp. 115–24.CrossRefGoogle Scholar
Harvey, H. W., 1942. Production of life in the sea. Biol. Rev., Vol. 17, pp. 221–46.CrossRefGoogle Scholar
Harvey, H. W., Cooper, L. H. N., Lebour, M. V. and Russell, F. S., 1935. Plankton production and its control. Journ. Mar. Biol. Assoc., Vol. XX, pp. 407–41.CrossRefGoogle Scholar
Heilbrunn, L. V., 1937. An Outline of General Physiology.Google Scholar
Hunt, O. D., 1925. The food of the bottom fauna of the Plymouth fishing grounds. Journ. Mar. Biol. Assoc., Vol. XIII, pp. 560–99.CrossRefGoogle Scholar
Hunt, O. D., 1926. A new method for quantitative sampling of the sea bottom. Journ. Mar. Biol. Assoc., Vol. XIV, pp. 529–34.CrossRefGoogle Scholar
Jenkin, P. M., 1937. Oxygen production by the diatom Coscinodiscus excentricus Ehr. in relation to submarine illumination in the English Channel. Journ. Mar. Biol. Assoc., Vol. XXII, pp. 301–43.CrossRefGoogle Scholar
Juday, C., 1940. The annual energy budget of an inland lake. Ecology, Vol. 21, pp. 438–50.CrossRefGoogle Scholar
Kahl, A., 1935. Die Tierwelt Deutschlands. Protozoa. I. Wimpertiere oder Ciliata (Infusoria), pp. 1886.Google Scholar
Krogh, A., 1916. The Respiratory Exchange of Animals and Man. Monographs in Biochemistry.CrossRefGoogle Scholar
Krogh, A. & Spärck, R., 1936. On a new bottom sampler for investigation of the microfauna of the sea bottom—with remarks on the quantity and significance of the benthonic microfauna. K. danske vidensk. Selsk. Biol. Medd., Vol. XIII, 4, pp. 312.Google Scholar
Lackey, J. B., 1936. Occurrence and distribution of the marine protozoan species in the Woods Hole area. Biol. Bull., Vol. LXX, pp. 264–78.Google Scholar
Lebour, M. V., 1922. The food of plankton organisms. Journ. Mar. Biol. Assoc., Vol. XII, pp. 644–77.CrossRefGoogle Scholar
Lebour, M. V. 1930. The Planktonic Diatoms of Northern Seas. Ray Society, London.Google Scholar
Lemmermann, E., 1914. Die Süsswasser-flora Deutschlands, Österreichs und der Schweiz. Heft I. Flagellatae I. Pantostomatinae, Protomastiginae, Distomatinae.Google Scholar
Lloyd, B., 1931. Muds ofthe Clyde Sea area. II. Bacterial Content. Journ. Mar. Biol. Assoc., Vol. XVII, pp. 751–66.CrossRefGoogle Scholar
Lohmann, H., 1908. Untersuchungen zur Feststellung des vollständigen Gehalts des Meeres an Plankton. Wiss. Meeresuntersuch. Abt. Kiel, N.F., Bd. X, pp. 131370.Google Scholar
Lohmann, H., 1911. Über das Nannoplankton und die Zentrifugierung kleinster Wasserproben zur Gewinnung desselben im lebendem Zustande. Int. Rev. Hydrobiol., Bd. IV, pp. 138.CrossRefGoogle Scholar
Macginitie, G. E., 1932. The rôle of bacteria as food for bottom animals. Science, Vol. 76, p. 490.CrossRefGoogle ScholarPubMed
Mare, M. F., 1940. Plankton production off Plymouth and the mouth of the English Channel in 1939. Journ. Mar. Biol. Assoc., Vol. XXIV, pp. 461–82.CrossRefGoogle Scholar
Mare, M. F., The Significance of Micro-organisms and Organic Detritus in the Food Chains of a Marine Benthic Community. Unpublished thesis.Google Scholar
Marine Biological Association, 1931. Plymouth Marine Fauna (2nd edition).Google Scholar
Meiklejohn, J., 1930. The relation between the numbers of a soil bacterium and the ammonia produced by it in peptone solutions; with some reference to the effect on this process of the presence of amoebae. Ann. App. Biol., Vol. XVIL, pp. 614–37.CrossRefGoogle Scholar
Meiklejohn, J., 1932. The effect of Colpidium on ammonia production by soil bacteria. Ann. App. Biol., Vol. XIX, pp. 584608.Google Scholar
Moore, G. M., 1939. A limnological investigation of the microscopic benthic fauna of Douglas Lake, Michigan. Ecol. Monogr., Vol. 9, pp. 537–82.CrossRefGoogle Scholar
Moore, H. B., 1931. Muds of the Clyde Sea area. III. Chemical and physical conditions; Rate and nature of sedimentation; and Fauna. Journ. Mar. Biol. Assoc., Vol. XVII, pp. 325–58.CrossRefGoogle Scholar
Moore, H. B. & Neill, R. G., 1930. An instrument for sampling marine muds. Journ. Mar. Biol. Assoc., Vol. XVI, pp. 589–94.CrossRefGoogle Scholar
Orton, J. H., 1914. On some Plymouth holothurians. Journ. Mar. Biol. Assoc., Vol. X, pp. 211–35.CrossRefGoogle Scholar
Pennak, R. W., 1940. Ecology of the microscopic metazoa inhabiting the sandy beaches of some Wisconsin Lakes. Ecol. Monogr., Vol. 10, pp. 537615.CrossRefGoogle Scholar
Petersen, C. G. J., 1915. A preliminary result of the investigations on the valuation of the sea. Rep. Dan. Biol. Stat., Vol. XXIII, pp. 2932.Google Scholar
Petersen, C. G. J., 1918. The sea bottom and its production of fish food. Rep. Dan. Biol. Stat., Vol. XXV, pp. 162.Google Scholar
Petersen, C. G. J. & Boysen Jensen, P., 1911. Valuation of the sea. I. Animal life on the sea-bottom, its food and quantity. Rep. Dan. Biol. Stat., Vol. XX, pp. 379Google Scholar
Picken, L. E. R., 1937. The structure of some protozoan communities. Journ. Ecol., Vol. XXV, pp. 368–84.CrossRefGoogle Scholar
Poole, H. H. & Atkins, W. R. G., 1929. Photo-electric measurements of submarine illumination throughout the year. Journ. Mar. Biol. Assoc., Vol. XVI, pp. 297324.CrossRefGoogle Scholar
RAWSON, D. S., 1930. The bottom fauna of Lake Simcoe and its role in the ecology of the lake. Univ. Toronto Stud. Biol. Ser. XXXIV. Pub. Ontario Fish Res. Lab., Vol. 40, pp. 1183.Google Scholar
Rees, C. B., 1940. A preliminary study of the ecology of a mud-flat. Journ. Mar. Biol. Assoc., Vol. XXIV, pp. 185–99.CrossRefGoogle Scholar
Remane, A., 1933. Verteilung und Organisation der benthonischen Mikrofauna der Kieler Bucht. Wiss. Meeresuntersuch., Abt. Kiel, N.F., Bd. XXI, pp. 161222.Google Scholar
Reuszer, H. W., 1933. Marine bacteria and their rôle in the cycle of life in the sea. III. Distribution of bacteria in the ocean waters and muds about Cape Cod. Biol. Bull., Vol. 65, pp. 480–97.CrossRefGoogle Scholar
Sandon, H., 1932. The Food of Protozoa. Pub. Faculty of Science, Egyptian Univ., Cairo.Google Scholar
Singh, B. N., 1941. Selectivity in bacterial food by soil amoebae in pure mixed culture and in sterilized soil. Ann. App. Biol., Vol. 28, pp. 5264.CrossRefGoogle Scholar
Smith, J. E., 1932. The shell gravel deposits and infauna of the Eddystone grounds. Journ. Mar. Biol. Assoc., Vol. XVIII, pp. 243–78.CrossRefGoogle Scholar
Sparrow, F. K. Jr, 1937. The occurrence of saprophytic fungi in marine muds. Biol. Bull., Vol. 73, pp. 242–8.CrossRefGoogle Scholar
Thamdrup, H. M., 1935. Beiträge zur Ökologie der Wattenfauna auf experimenteller Grundlage. Medd. Komm. Havundersog. Kbh. Serie Fisk., Bd. X, pp. 1125.Google Scholar
Trask, P. D. 1932. The Origin and Environment of Source Sediments of Petroleum. Pub. Amer. Assoc. Petrol. Geol.Google Scholar
Waksman, S. A., 1933. On the distribution of organic matter in the sea bottom and the chemical nature and origin of marine humus. Soil Science, Vol. 36, pp. 125–47.Google Scholar
Waksman, S. A. & Carey, C. L., 1935. Decomposition of organic matter in sea water. I, Bacterial multiplication in stored sea water. Journ. Bact., Vol. 29, pp. 531–43.CrossRefGoogle ScholarPubMed
Waksman, S. A. & Hotchkiss, M., 1937. Viability of bacteria in sea water. Journ. Bact., Vol. 33, pp. 389400.CrossRefGoogle ScholarPubMed
Waksman, S. A. 1938. On the oxidation of organic matter in marine sediments by bacteria. Journ. Mar. Research, Vol. 1, pp. 101–18.CrossRefGoogle Scholar
Waksman, S. A., Reuszer, H. W., Carey, C. L., Hotchkiss, M. & Renn, C. E., 1933. Studies on the biology and chemistry of the Gulf of Maine. III. Bacteriological investigations of the sea water and marine bottoms. Biol. Bull., Vol. 64, pp. 183205.CrossRefGoogle Scholar
Zobell, C. E., 1939. Occurrence and activity of bacteria in marine sediments. In Recent Marine Sediments. Pub. Amer. Assoc. Petrol. Geol.Google Scholar
Zobell, C. E. & Anderson, D. Q., 1936. Vertical distribution of bacteria in marine sediments. Bull. Amer. Assoc. Petrol. Geol., Vol. 20, pp. 258–69.Google Scholar
Zobell, C. E. & Feltham, C. B., 1938. Bacteria as food for certain marine invertebrates. Journ. Mar. Research, Vol. I, pp. 312–27.Google Scholar
Zobell, C. E. 1942. The bacterial flora of a marine mud flat as an ecological factor. Ecology, Vol. 23, pp. 6978.CrossRefGoogle Scholar
Zobell, C. E. & Rittenberg, S. C., 1938. The occurrence and characteristics of chitinoclastic bacteria in the sea. Journ. Bact., Vol. XXXV, pp. 275–87.CrossRefGoogle Scholar