Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T17:31:46.317Z Has data issue: false hasContentIssue false

Studies on the Growth of Phaeodactylum Tricornutum IV. Comparison of Different Isolates

Published online by Cambridge University Press:  11 May 2009

J. Hayward
Affiliation:
Botany Department, University College, Swansea

Extract

Introduction

The diatom Phaeodactylum tricornutum Bohlin has been used in numerous experiments on the physiology and biochemistry of diatoms since the publication of the first paper involving this organism by Allen & Nelson (1910). The taxonomic position of the organism has been dealt with by Lewin (1958), who also lists the papers which she considers to have involved the use of P. tricornutum. The present study reports the results obtained from a comparison of different isolates of this organism.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. J. & Nelson, E. W., 1910. On the artificial culture of marine plankton organisms. J. mar. biol. Ass. U.K., Vol. 8, pp. 421–74.CrossRefGoogle Scholar
Barker, H. A., 1935. Photosynthesis in diatoms. Arch. Mikrobiol., Bd. 6, pp. 141–56.Google Scholar
Bowden, C. A., 1959. Improved solvent combination for amino-acid chromatography. Clinica chim. Acta, Vol. 4, pp. 539–43.CrossRefGoogle Scholar
Bunt, J. S., 1964. Analysis of algal pigments by thin-layer chromatography. Nature, Lond., Vol. 203, pp. 1261–3.CrossRefGoogle ScholarPubMed
Coughlan, J., 1962. Chain formation by Phaeodactylum tricornutum. Nature, Lond., Vol. 195, pp. 831–2.CrossRefGoogle Scholar
Cowey, C. B. & Corner, E. D. S., 1966. The amino acid composition of certain unicellular algae and of the faecal pellets produced by Calanus finmarchius when feeding on them. In Some Contemporary Studies in Marine Science, pp. 225–31. Ed. H., Barnes. London: Allen and Unwin.Google Scholar
Chu, S. P., 1946. The utilization of organic phosphorus by phytoplankton. J. mar. biol. Ass. U.K., Vol. 26, pp. 285–95.CrossRefGoogle ScholarPubMed
Droop, M. R., 1958. Optimum relative and actual ionic concentrations for growth of some euryhaline algae. Verh. int. Verein. theor. angew. Limnol., Bd. 13, pp. 722–30.Google Scholar
Gross, F., 1936. Notes on the culture of some marine organisms. J. mar. biol. Ass. U.K., Vol. 21, pp. 753–68.CrossRefGoogle Scholar
Guillard, R. R. L. & Ryther, J. H., 1962. Studies on marine planktonic diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol, Vol. 8, pp. 229–39.CrossRefGoogle Scholar
Harvey, H. W., 1940. Nitrogen and phosphorus required for the growth of phyto-plankton. J. mar. biol. Ass. U.K., Vol. 24, pp. 115–23.Google Scholar
Hayward, J., 1965. Studies on the growth of Phaeodactylum tricornutum (Bohlin). I. The effect of certain organic nitrogenous substances on growth. Physiol. Pl, Vol. 18, pp. 201–7.Google Scholar
Hayward, J., 1968. Studies on the growth of Phaeodactylum tricornutum. II. The effect of organic substances on growth. Physiologia Plantarum, Vol. 21, pp. 100–8.Google Scholar
Hutner, S. H., 1948. Essentiality of constituents of sea-water for growth of a marine diatom. Trans. N.Y. Acad. Sci., Vol. 10, pp. 136–41.CrossRefGoogle Scholar
Lewin, J. C., 1958. The taxonomic position of Phaeodactylum tricornutum. J. gen. Microbiol., Vol. 18, pp. 427–32.CrossRefGoogle Scholar
Lewin, J. C, Lewin, R. A. & Philpott, D. E., 1958. Observations on Phaeodactylum tricornutum. J. gen. Microbiol., Vol. 18, pp. 418–26.CrossRefGoogle Scholar
Parsons, T. R., 1961. On the pigment composition of eleven species of marine phytoplankters. J. Fish. Res. Bd Can., Vol. 18, pp. 1017–25.CrossRefGoogle Scholar
Parsons, T. R., Stephens, K. & Strickland, J. D. H., 1961. On the chemical composition of eleven species of phytoplankters. J. Fish. Res. Bd Can., Vol. 18, pp. 1001–16.Google Scholar
Provasoli, L., 1958. Effect of plant hormones on Ulva. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 114, pp. 375–84.CrossRefGoogle Scholar
Provasoli, L., Mclaughlin, J. J. A. & Droop, M. R., 1957. The development of artificial media for marine algae. Arch. Microbiol., Vol. 25, pp. 392428.Google Scholar
Riley, J. P. & Wilson, T. R. S., 1967. The pigments of some marine phytoplankton species. J. mar. biol. Ass. U.K., Vol. 47, pp. 351–62.Google Scholar
Ryther, J. H., 1954. The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Lond Island, New York. Biol. Bull. mar. biol. Lab. Woods Hole, Vol. 106, pp. 198209.CrossRefGoogle Scholar
Snedecor, G. W., 1956. Statistical Methods. 534 pp. The Iowa State College Press.Google Scholar
Spencer, C. P., 1954. Studies on the culture of a marine diatom. J. mar. biol. Ass. U.K., Vol. 33, pp. 265–90.CrossRefGoogle Scholar
Wilson, D. P., 1946. The triradiate and other forms of Nitzschia closterium (Ehrenberg). Wm. Smith, forma minutissima of Allen & Nelson. J. mar. biol. Ass. U.K., Vol. 26, pp. 235–70.CrossRefGoogle Scholar