Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T17:26:18.941Z Has data issue: false hasContentIssue false

Structure and ultrastructure of muscles in the priapulid Halicryptus spinulosus: functional and phylogenetic remarks

Published online by Cambridge University Press:  11 May 2009

M. Daniela Candia Carnevali
Affiliation:
Istituto di Zoologia, Università di Milano, Via Celoria 10, 20133 Milano, Italy
Marco Ferraguti
Affiliation:
Istituto di Zoologia, Università di Milano, Via Celoria 10, 20133 Milano, Italy

Extract

The Priapulida phylum is a rather homogeneous small group of marine invertebrates, living buried in sand and mud of cold waters. These worms present great difficulty in determining their systematic position: in the first instance, Priapulida were considered to be pseudo-coelomates, and classified among the Aschelminthes (Hyman, 1951). How ever, later studies (Shapeero, 1961) have pointed out that the body cavity is actually a coelom, and not a pseudo-coelom. Consequently it seems improper to include Priapulida among Aschelminthes, even if their real position still remains undefined. Today most authors tend to consider priapulids as the last relicts of an originally larger group, forming a separate phylum (van der Land, 1970). We can assume some connexions with other minor Protostoma, but not to an extent sufficient to consider a possible group affinity (Grassé, 1959). The general anatomical organization of a priapulid is now well known (van der Land, 1970), but the only detailed microscopical descriptions are those of the genus Priapulus (Mattisson, Nilsson & Fange, 1974) and the genus Tubilucus (Kirsteuer & van der Land, 1970). We have only incomplete data and summary descriptions concerning the other existing genus. Ultrastructural researches are even more scarce; electron microscope studies could clarify the submicroscopical organization of these animals and allow comparisons with other groups. Afzelius & Ferraguti (1978), for instance, have shown that the sperm of Priapulus caudatus present a very primitive pattern, resembling that of the sperm of many other marine invertebrates with external fertilization. The muscular systems are also useful for researches of phylogenetic correlations: it is, in fact, possible to correlate the ultrastructural organization of the muscles with the systematic position of their respective animals (Hanson & Loewy, 1960; Lanzavecchia, 1977). For the muscular systems of priapulids the only pertinent data are those of Mattisson et al. (1974) on Priapulus caudatus. A detailed analysis of the muscles of other species seems therefore necessary to set up a general picture of the situation in Priapulida. In these animals the muscles are organized to form a typical hydraulic system. The hydraulic systems present one of the most topical problems, from both the morphological and functional points of view (Hammond, 1970; Chapman, 1975).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzelius, B. A. & Ferraguti, M., 1978. The spermatozoon of Priapulus caudatus Lamarck. Journal of Submicroscopic Cytology, 10, 7179.Google Scholar
Amsellem, J. & Clément, P., 1976. Caractéristiques ultrastructurales et vitesse de contraction des muscles squélettiques longitudinaux d'un rotifère. Journal de Microscopie et de Biologie Cellulaire, 26, 2a.Google Scholar
Beklemishev, W. N., 1969. Principles of Comparative Anatomy of Invertebrates. Edinburgh: Oliver and Boyd.Google Scholar
Candia, Carnevali M. D., 1978. Z-line and supercontraction in the hydraulic muscular systems of insect larvae. Journal of Experimental Zoology, 203, 115.Google Scholar
Chapman, G., 1975. Versatility of hydraulic systems. Journal of Experimental Zoology, 194, 249270.CrossRefGoogle Scholar
Clark, R. B., 1964. Dynamics in Metazoan Evolution. 313 pp. Oxford: Clarendon Press.Google Scholar
Clement, P. & Villeneuve, J., 1971. Membranes et réticulum sarcoplasmiques dans les muscles des rotifères. Journal de Microscopie, 11, 40.Google Scholar
Friederich, H. & Langeloh, H. P., 1936. Untersuchungen zur Physiologie der Bewegung und des Hautmuskelschlausches bei Halicryptus spinulosus und Priapulus caudatus. Biologisches Zentralblatt, 56, 249260.Google Scholar
Grassé, P. P., 1959. Classe des Priapulides. In Traité de Zoologie, tome V, premier fascicule, (ed. Grassé, P. P.), pp. 908926. Paris: Masson.Google Scholar
Hammond, R. A., 1970. The burrowing of Priapulus caudatus. Journal of Zoology, 162, 469480.CrossRefGoogle Scholar
Hanson, J. & Loewy, J., 1960. Structure and function of the contractile apparatus in the muscles of invertebrate animals. In The Structure and Function of Muscle, vol. 1 (ed. Bourne, G. H.), pp. 265333. New York and London: Academic Press.Google Scholar
Hoyle, G., 1964. Muscle and neuromuscular physiology. In Physiology of Mollusca, vol. 1 (ed. Wilbur, K. M. and Yonge, C. M.), pp. 313351. New York and London: Academic Press.CrossRefGoogle Scholar
Hyman, L. H., 1951. The Invertebrates. Vol. lll. Acanthocephala, Aschelminthes and Entoprocta. The Pseudocoelomate Bilateria. 572 pp. New York: McGraw-Hill.Google Scholar
Kirsteuer, E. & Van Der Land, J., 1970. Some notes on Tubiluchus corallicola (Priapulida) from Barbados, West Indies. Marine Biology, 7, 230238.CrossRefGoogle Scholar
Lanzavecchia, G., 1977. Morphological modulations in helical muscles (Aschelminthes and Annelids). International Review of Cytology 55, 133186.CrossRefGoogle Scholar
Lanzavecchia, G., Valvassori, R. & De Eguileor, M., 1977. Bipolarity in thick filaments of Nematomorpha. Journal of Molecular Biology, 111, 371374.CrossRefGoogle ScholarPubMed
Mattisson, A., Nilsson, S. & Fänge, R., 1974. Light microscopical and ultrastructural observations on muscles of Priapulus caudatus (Priapulida) and their responses to drugs, with phylogenetic remarks. Zoologica Scripta, 3, 209218.CrossRefGoogle Scholar
Nyholm, K. G. & Nyholm, P. G., 1976 a. Ulfrastructure of the pharyngeal muscles of Homalorhaga Kinorincha. Zoon, 4, 121130.Google Scholar
Nyholm, K. G. & Nyholm, P. G., 1976 b. Z-bodies and supercontraction in the integumental muscles of Homalorhaga Kinorincha. Zoon, 4, 131136.Google Scholar
Osborne, M. P., 1967. Supercontraction in the muscles of the blowfly larva: an ultrastructural study. Journal of Insect Physiology, 13, 14711482.CrossRefGoogle Scholar
Rosembluth, J., 1972. Obliquely striated muscle. In The Structure and Function of Muscle, vol. 1 (ed. Bourne, G. H.), pp. 389420. New York and London: Academic Press.CrossRefGoogle Scholar
Shapeero, W. L., 1961. Phylogeny of Priapulida. Science, New York, 133, 879880.CrossRefGoogle ScholarPubMed
Teuchert, G., 1977. The ultrastructure of the marine Gastrotrich Turbanella cornuta Remane (Macrodasyoidea) and its functional and phygenetic importance. Zoomorphologie, 88, 189246.CrossRefGoogle Scholar
Van Der, Land J., 1970. Systematics, zoogeography and ecology of the Priapulida. Zoologische verhandelingen, 112, 1122.Google Scholar