Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-07T04:53:31.896Z Has data issue: true hasContentIssue false

Sponges associated with Sargassum spp. (Phaeophyceae: Fucales) from the south-western Gulf of California

Published online by Cambridge University Press:  09 July 2009

E. Ávila*
Affiliation:
Programa de Investigación en Botánica Marina, Departamento de Biología Marina UABCS, Apartado postal, 19-B, La Paz, Baja California Sur 23080, México
N.I. Blancas-Gallangos
Affiliation:
Programa de Investigación en Botánica Marina, Departamento de Biología Marina UABCS, Apartado postal, 19-B, La Paz, Baja California Sur 23080, México
R. Riosmena-Rodríguez
Affiliation:
Programa de Investigación en Botánica Marina, Departamento de Biología Marina UABCS, Apartado postal, 19-B, La Paz, Baja California Sur 23080, México
L. Paul-Chávez
Affiliation:
Programa de Investigación en Botánica Marina, Departamento de Biología Marina UABCS, Apartado postal, 19-B, La Paz, Baja California Sur 23080, México
*
Correspondence should be addressed to: E. Ávila, Programa de Investigación en Botánica Marina, Departamento de Biología Marina UABCS, Apartado postal, 19-B, La Paz, Baja California Sur 23080, México email: [email protected]

Abstract

This study constitutes a preliminary assessment of the abundance and species richness of sponges living on the brown seaweed Sargassum spp. from the southern Gulf of California (Mexico). The diversity and abundance of sponges associated with Sargassum was investigated from November 2006 to November 2007. In addition, it was examined whether temporal variations in the abundance of associations were influenced by changes in size and density of Sargassum as well as environmental factors such as water temperature and salinity. Twelve sponge species (4 Haplosclerida, 3 Poecilosclerida, 4 Dictyoceratida and 1 Clathrinida) were found growing epiphytically on the lower portions of Sargassum plants and the most frequent species were Callyspongia californica and Haliclona turquoisia (38% and 27%, respectively). The abundance of associations showed significant temporal and spatial variations, being higher from June to November (post Sargassum growth period), at depths from 0.5–2.5 m. The number of sponge species m−2 (both epiphytic and non-epiphytic) inside the seaweed bed was 4.8 species m−2, while outside it, the absence of hard substrate for attachment severely restricted the number of sponges. These results suggest that Sargassum provide substratum and habitat for the sponge community from this region, and that their seasonal growth patterns may influence the abundance and diversity of the associations.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aburto-Oropeza, O., Sala, E., Paredes, G., Mendoza, A. and Ballesteros, E. (2007) Predictability of reef fish recruitment in a highly variable nursery habitat. Ecology 88, 22202228.CrossRefGoogle Scholar
Andrews, H.L. (1945) The kelp beds of the Monterey region. Ecology 26, 2437.CrossRefGoogle Scholar
Ang, P.O. Jr. (1985) Regeneration studies of Sargassum siliquosum J. Ag. and S. paniculatum J. Ag. (Phaeophyta, Sargassaceae). Botanica Marina 28, 231235.CrossRefGoogle Scholar
Ávila, E. and Carballo, J.L. (2006) Habitat selection by larvae of the symbiotic sponge Haliclona caerulea (Hechtel, 1965) (Demospongiae, Haplosclerida). Symbiosis 41, 2129.Google Scholar
Ávila, E., Carballo, J.L. and Cruz-Barraza, J.A. (2007) Symbiotic relationships between sponges and other organisms from the Sea of Cortes (Mexican Pacific coast): same problems, same solutions. In Custódio, M.R., Hajdu, E., Lôbo-Hajdu, G. and Muricy, G. (eds) Porifera research, biodiversity, innovation and sustainability. Série Livros 28, Museu Nacional, Rio de Janeiro, pp. 147156.Google Scholar
Barthel, D. (1986) On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. I. Substrate specificity, growth and reproduction. Marine Ecology Progress Series 32, 291298.CrossRefGoogle Scholar
Barthel, D. (1989) Growth of the sponge Halichondria panicea in the North Sea habitat. In Klekowski, R.Z., Styczynska-Jurewicz, E. and Falkowski, L. (eds) Proceedings of the twenty-first European Marine Biology Symposium, Ossolineum, Gdansk, pp. 2330.Google Scholar
Bell, J.J. and Carballo, J.L. (2008) Patterns of sponge biodiversity and abundance across different biogeographic regions. Marine Biology 155, 563570.CrossRefGoogle Scholar
Blight, A.J. and Thompson, R.C. (2008) Epibiont species richness varies between holdfasts of a northern and a southerly distributed kelp species. Journal of the Marine Biological Association of the United Kingdom 88, 469475.CrossRefGoogle Scholar
Calcinai, B., Cerrano, C., Totti, C., Romagnoli, T. and Bavestrello, G. (2006) Symbiosis of Mycale (Mycale) vansoesti sp. nov. (Porifera, Demospongiae) with a coralline alga from North Sulawesi (Indonesia). Invertebrate Biology 125, 195204.CrossRefGoogle Scholar
Cancino, J. and Santelices, B. (1981) The ecological importance of kelp-like holdfasts as habitat of invertebrates in Central Chile. II. Factors affecting community organization. In Levring, T. (ed.) Proceedings of the International Seaweed Symposium, Goẗeborg, Sweden, 11–15 August 1980. Tore Levring, pp. 241246.CrossRefGoogle Scholar
Carballo, J.L. and Ávila, E. (2004) Population dynamics of a mutualistic interaction between the sponge Haliclona caerulea, and the red alga Jania adherens. Marine Ecology Progress Series 279, 93104.CrossRefGoogle Scholar
Carballo, J.L., Avila, E., Enríquez, S. and Camacho, L. (2006) Phenotypic plasticity induced in transplanting experiments with a mutualistic association between the sponge Haliclona caerulea and the red macroalgae Jania adherens. I. Morphological responses of the sponge. Marine Biology 148, 467478.CrossRefGoogle Scholar
Carballo, J.L., Vega, C., Cruz-Barraza, J.A., Yañez, B., Nava, H., Ávila, E. and Wilson, M. (2008a) Short and long-term patterns of sponge diversity on rocky tropical coast: evidence of large structuring factors. Marine Ecology: an Evolutionary Perspective 29, 216236.CrossRefGoogle Scholar
Carballo, J.L., Cruz-Barraza, J.A., Nava, H. and Bautista-Guerrero, E. (2008b) Esponjas perforadoras de sustratos calcáreos. Importancia en los ecosistemas arrecifales del Pacífico este, 1st edition. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), México.Google Scholar
Carpenter, E.J. and Cox, J.L. (1974) Production of pelagic Sargassum and a blue-green epiphyte in the western Sargasso Sea. Limnology and Oceanography 19, 429435.CrossRefGoogle Scholar
Conover, J.T. and Sieburth, J. (1964) Effect of Sargassum distribution on its epibiota and antibacterial activity. Botanica Marina 6, 147157.CrossRefGoogle Scholar
Coston-Clements, L., Settle, L.R., Hoss, D.E. and Cross, F.A. (1991) Utilization of the Sargassum habitat by marine invertebrates and vertebrates: a review. National Marine Fisheries Service, NOAA, Southeast Fisheries Science Center, Beaufort Laboratory, Beaufort, NC, 32 pp.Google Scholar
Davy, S.K., Trautman, D.A., Borowitzka, M.A. and Hinde, R. (2002) Ammonium excretion by a symbiotic sponge supplies the nitrogen requirements of its rhodophyte partner. Journal of Experimental Biology 205, 35053511.CrossRefGoogle ScholarPubMed
Enríquez, S., Carballo, J.L. and Avila, E. (2009) Phenotypic plasticity induced in transplant experiments in a mutualistic association between the red alga Jania adhaerens (Rhodophyta, Corallinales) and the sponge Haliclona caerulea (Porifera: Haplosclerida): morphological responses of the alga. Journal of Phycology 45, 8190.CrossRefGoogle Scholar
Espinoza, J. and Rodriguez, H. (1989) Growth of Sargassum sinicola Setchell Et Gardner (Phaeophyta) in the southern Gulf of California, Mexico. Ciencias Marinas 15, 141149.CrossRefGoogle Scholar
Frost, T.M., De Nagy, G.S. and Gilbert, J.J. (1982) Population dynamics and standing biomass of the freshwater sponge Spongilla lacustris. Ecology 63, 12031210.CrossRefGoogle Scholar
Gerrodette, T. and Flechsig, A.O. (1979) Sediment-induced reduction in the pumping rate of the tropical sponge Verongia lacunose. Marine Biology 55, 103110.CrossRefGoogle Scholar
Ghelardi, R.J. (1971) Species structure of the holdfast community. In North, W.J. (ed.) The biology of giant kelp beds (Macrocystis) in California. Nova Hedwigia 32, 381420.Google Scholar
Goodsell, P.J. and Connell, S.D. (2008) Complexity in the relationship between matrix composition and inter-patch distance in fragmented habitats. Marine Biology 154, 117125.CrossRefGoogle Scholar
Gorham, J. and Lewey, S.A. (1984) Seasonal changes in the chemical composition of Sargassum muticum. Marine Biology 80, 103107.CrossRefGoogle Scholar
Gray, J.S. (1981) The ecology of marine sediments. Cambridge: Cambridge University Press.Google Scholar
Hacker, S.D. and Steneck, R.S. (1990) Habitat architecture and the abundance and body-size dependent habitat selection of a phytal amphipod. Ecology 71, 22692285.CrossRefGoogle Scholar
Hauser, A., Attrill, M.J. and Cotton, P.A. (2006) Effects of habitat complexity on the diversity and abundance of macrofauna colonizing artificial kelp holdfasts. Marine Ecology Progress Series 325, 93100.CrossRefGoogle Scholar
Jephson, N.A. and Gray, P.W.G. (1977) Aspects of the ecology of Sargassum muticum (Yendo) Fensholt, in the Solent region of the British Isles. The growth cycle and epiphytes. In Keegan, B.F., Ceidigh, P.O. and Boaden, P.J.S. (eds) Proceedings of the Eleventh European Symposium of Marine Biology, University College, Galway, 5-11 October 1976. Biology of Benthic Organisms. Oxford: Pergamon Press, pp. 367375.Google Scholar
Kingsford, M. and Choat, J. (1985) The fauna associated with drift algae captured with a plankton-mesh purse seine net. Limnology and Oceanography 30, 618630.CrossRefGoogle Scholar
Leite, F.P.P. and Turra, A. (2003) Temporal variation in Sargassum biomass, Hypnea epiphytism and associated fauna. Brazilian Archives of Biology and Technology 46, 665671.CrossRefGoogle Scholar
Leite, F.P.P., Tanaka, M.O. and Gebara, R.S. (2007) Structural variation in the brown alga Sargassum cymosum and its effects on associated amphipod assemblages. Brazilian Journal of Biology 67, 215221.CrossRefGoogle ScholarPubMed
Maldonado, M., Giraud, K. and Carmona, C. (2008) Effects of sediment on the survival of asexually produced sponge recruits. Marine Biology 154: 631641.CrossRefGoogle Scholar
Maldonado, M. and Uriz, M.J. (1998) Microrefuge exploitation by subtidal encrusting sponges: patterns of settlement and post-settlement survival. Marine Ecology Progress Series 174, 141150.CrossRefGoogle Scholar
Martin-Smith, K.M. (1993) Abundance of mobile epifauna: the role of habitat complexity and predation by fishes. Journal of Experimental Marine Biology and Ecology 174, 243260.CrossRefGoogle Scholar
Martinez-Nadal, N.G., Rodriguez, L.V. and Casillas, C. (1965) Isolation and characterization of Sarganim complex, a new broad spectrum antibiotic isolated from marine algae. Antimicrobial Agents and Chemotheraphy 1964, 131134.Google Scholar
McCourt, R.M. (1984) Seasonal patterns of abundance, distributions, and phenology in relation to growth strategies of three Sargassum species. Journal of Experimental Marine Biology and Ecology 74, 141156.CrossRefGoogle Scholar
McQuaid, C.D. and Dower, K.M. (1990) Enhancement of habitat heterogeneity and species richness on rocky shores inundated by sand. Oecologia 84, 142144.CrossRefGoogle ScholarPubMed
Moore, P.G. (1971) The nematode fauna associated with holdfasts of kelp (Laminaria hyperborea) in northeast Britain. Journal of the Marine Biological Association of the United Kingdom 51, 589604.CrossRefGoogle Scholar
Moore, P.G. (1978) Turbidity and kelp holdfast amphipoda. I. Wales and SW England. Journal of Experimental Marine Biology and Ecology 32, 5396.CrossRefGoogle Scholar
Mukai, H. (1971) The phytal animals on the thalli of Sargassum serratifolium in the Sargassum region, with reference to their seasonal fluctuations. Marine Biology 8, 170182.CrossRefGoogle Scholar
Norton, T.A. and Benson, M.R. (1983) Ecological interactions between the brown seaweed Sargassum muticum and its associated epifauna. Marine Biology 75, 169177.CrossRefGoogle Scholar
Ojeda, F.P. and Santelices, B. (1984) Invertebrate communities in holdfast of Macrocystis pyrifera. Marine Ecology Progress Series 16, 6573.CrossRefGoogle Scholar
Osborn, K. (1999) Effects of Sargassum muticum on native marine communities. Presented at the Pacific Forum on Wednesday, August 25, 1999. Monterey Bay Aquarium Research Institute, Moss Landing, California. Available at: www.mbari.org/seminars/1999/aug25_osborn.html (accessed 13 March 2009).Google Scholar
Padilla-Verdín, C.J. (2007) Estructura de las comunidades bentónicas asociadas a paredes rocosas verticales con distinto grado de exposición a la luz. MSc thesis. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico.Google Scholar
Palumbi, S.R. (1985) Spatial variation in an alga-sponge commensalisms and the evolution of ecological interactions. The American Naturalist 126, 267274.CrossRefGoogle Scholar
Paul-Chávez, L. (2005) Taxonomía y dinámica poblacional del complejo Sinicola (Fucales: Phaeophyta) para el suroeste del Golfo de California. PhD thesis. Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Mexico.Google Scholar
Prince, J.S. and O'Neal, S.W. (1979) The ecology of Sargassum pteropleuron Grunow (Phaeophyceae, Fucales) in the waters off south Florida. I. Growth, reproduction and population structure. Phycologia 18, 109114.CrossRefGoogle Scholar
Ray-Lien, H., Chuan-Chuan, T. and Tse-Min, L. (2004) Assessment of temperature and nutrient limitation on seasonal dynamics among species of Sargassum from a coral reef in southern Taiwan. Journal of Phycology 40, 463473.Google Scholar
Rivera, M. and Scrosati, R. (2006) Dinámica de Poblaciones de Sargassum lapazeanum (Fucales, Phaeophyta) del Golfo de California, México. Phycologia 2, 178189.CrossRefGoogle Scholar
Rützler, K. (1990) Associations between Caribbean sponges and photosynthetic organisms. In Rützler, K. (ed.) New perspectives in sponge biology. Washington DC: Smithsonian Institution Press, pp. 455466.Google Scholar
Ryland, J.S. (1974) Behaviour, settlement and metamorphosis of bryozoan larvae: a review. Thalassia Jugoslavica 10, 239262.Google Scholar
Scott, F.J., Wetherbee, R. and Kraft, G.T. (1982) The morphology and development of some prominently stalked southern Australian Halymeniaceae (Cryptonemiales, Rhodophyta). II The sponge-associated genera Thamnoclonium Kuetzing and Codiophyllum Gray. Journal of Phycology 20, 286295.CrossRefGoogle Scholar
Sieburth, J. and Conover, J.T. (1965) Sargassum tannin, an antibiotic which retards fouling. Nature 208, 5253.CrossRefGoogle Scholar
Smith, S.D.A. (1996) The macrofaunal community of Ecklonia radiata holdfasts: variation associated with sediment regime, sponge cover and depth. Austral Ecology 21, 144153.CrossRefGoogle Scholar
Steinberg, P.D. (1986) Chemical defenses and the susceptibility of tropical marine brown algae to herbivores. Oecologia 69, 628630.CrossRefGoogle ScholarPubMed
Stoner, A.W. and Lewis, F.G. (1985) The influence of quantitative and qualitative aspects of habitat complexity in tropical seagrass meadows. Journal of Experimental Marine Biology and Ecology 94, 1940.CrossRefGoogle Scholar
Suárez-Castillo, A.N. (2008) Fauna asociada a mantos de Sargassum (Ochrophyta: Fucales) en El Sauzoso, Baja California Sur, México. MSc thesis. Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Mexico.Google Scholar
Taniguchi, H., Nakano, S. and Tokeshi, M. (2003) Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48, 718728.CrossRefGoogle Scholar
Trautman, D.A. and Hinde, R. (2002) Sponge/algal symbioses: a diversity of associations. In Seckbach, J. (ed.) Symbiosis: mechanisms and model systems. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 521537.Google Scholar
Trautman, D.A., Hinde, R. and Borowitzka, M.A. (2000) Population dynamics of an association between a coral reef sponge and a red macroalga. Journal of Experimental Marine Biology and Ecology 244, 87105.CrossRefGoogle Scholar
Trautman, D.A., Hinde, R. and Borowitzka, M.A. (2003) The role of habitat in determining the distribution of a sponge-red alga symbiosis on a coral reef. Journal of Experimental Marine Biology and Ecology 283, 120.CrossRefGoogle Scholar
Tronchin, E., Samaai, T., Anderson, R.J. and Bolton, J. (2006) Sponge–seaweed associations in species of Ptilophora (Gelidiaceae, Rhodophyta). Phycological Research 54, 140148.CrossRefGoogle Scholar
Underwood, A.J. (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.Google Scholar
Vasquez, J.A. and Vega, J.M.A. (2005) Macroinvertebrados asociados a discos de adhesión de algas pardas: biodiversidad de comunidades discretas como indicadoras de perturbaciones locales y de gran escala. Cuarta parte. Capítulo XII. In Figueroa, E. (ed.) Biodiversidad Marina: Valoración, uso y perspectivas. ‘Hacia donde va Chile’ Ed. Universitaria, Santiago, pp. 429450.Google Scholar
Weber Van Bosse, A. (1890) Etudes sur des algues de l'Archipel Malaisien. Annales de Jardin Botanique de Buitenzorg 8, 7994.Google Scholar
Wigham, G.D. (1975) The biology and ecology of Rissoa parva (da Costa) (Gastropoda: Prosobranquia). Journal of the Marine Biological Association of the United Kingdom 55, 4567.CrossRefGoogle Scholar
Wilkinson, C.R. (1983) Net primary productivity in coral reef sponges. Science 219, 410412.CrossRefGoogle ScholarPubMed
Wilkinson, C.R. and Evans, E.A. (1989) Sponge distribution across Davies Reef, Great Barrier Reef relative to location, depth, and water movement. Coral Reefs 8, 17.CrossRefGoogle Scholar
Withers, R.G., Farnham, W.F., Lewey, S., Jephson, N.A., Haythorn, J.M. and Gray, P.W.G. (1975) The epibionts of Sargassum muticum in British waters. Marine Biology 31, 7986.CrossRefGoogle Scholar
Wulff, J.L. (1997) Causes and consequences of differences in sponge diversity and abundance between the Caribbean and eastern Pacific at Panama. Proceedings of the Eighth International Coral Reef Symposium, Panama, June 7 1996, pp. 13771382.Google Scholar
Wulff, J.L. (2006) Ecological interactions of marine sponges. Canadian Journal of Zoology 84, 146166.CrossRefGoogle Scholar