Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T06:54:53.611Z Has data issue: false hasContentIssue false

Species composition and spatial distribution of abundances and biomass of phytoplankton and ciliates during summer stratification in the Gulf of Hammamet (Tunisia)

Published online by Cambridge University Press:  02 February 2011

Imen Hannachi
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de recherche 00/UR/0907 Ecobiologie, Planctonologie and Microbiologie des Ecosystèmes Marins, Route Soukra Km 3.5 BP 1171 CP 3000 Sfax, Tunisie
Zaher Drira
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de recherche 00/UR/0907 Ecobiologie, Planctonologie and Microbiologie des Ecosystèmes Marins, Route Soukra Km 3.5 BP 1171 CP 3000 Sfax, Tunisie
Malika Bel Hassen
Affiliation:
Institut National des Sciences et Technologie de la Mer, 2025 Salambô Tunis, Tunisie
Asma Hamza
Affiliation:
Institut National des Sciences et Technologie de la Mer, Centre de Sfax BP 1035 Sfax 3018, Tunisie
Habib Ayadi
Affiliation:
Université de Sfax, Faculté des Sciences de Sfax, Département des Sciences de la Vie, Unité de recherche 00/UR/0907 Ecobiologie, Planctonologie and Microbiologie des Ecosystèmes Marins, Route Soukra Km 3.5 BP 1171 CP 3000 Sfax, Tunisie
Lotfi Aleya*
Affiliation:
Université de Franche-Comté, Chrono-Environnement, UMR CNRS 6249 1, Place Leclerc, F-25030 Besançon cedex, France
*
Correspondence should be addressed to: L. Aleya, Université de Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS 6249 1, Place Leclerc, F-25030, Besançon cedex, France email: [email protected]

Abstract

We studied the distribution of phytoplankton and ciliate communities in relation to environmental factors at 6 stations sampled between 28 and 31 July 2006 during the summer water stratification in the Gulf of Hammamet (Tunisia, eastern Mediterranean Sea). A strong thermocline was established at 30 m, and, on average, the N/P ratio was lower than the Redfield ratio (16), suggesting a potential N limitation. The inshore location was numerically dominated by dinoflagellates (55%) represented essentially by members of the genera Protoperidinium, Gymnodinium, and cryptic Scrippsiella trochoidea and on the offshore by diatoms (68%). The phytoplankton assemblage was largely dominated by the diatoms Thalassionema nitzshioides and Rhizosolenia styliformis, while the ciliate community was numerically dominated by small taxa such as Lohmanniella oviformis (6 × 102 cells l−1) and Uronema marinum (5.50 × 102 cells l−1). The total phytoplankton abundance increased from the coastal area (5.26 × 102 ± 4.48 × 102) to the open sea (10.33 ×102 ± 28.06 × 102) and decreased from the surface to the bottom, inversely to the ciliate abundance. Total phytoplankton and abundances showed similar patterns. Total ciliate biomass decreased from the inshore (0.25 ± 0.58) to the offshore (0.06 ± 0.10) areas but increased from the surface to the bottom. The diversity index of both phytoplankton and ciliate communities showed a decrease with a coastal–open sea gradient. The relationships between phytoplankton and ciliates suggest planktonic micro-heterotrophs were implicated in the channelling of matter and energy through the microbial loop in the Gulf of Hammamet.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alder, V.A. (1999) Tintinnoinea. In Boltovsky, D. (ed.) South Atlantic zooplankton. Volume 2. Leiden, The Netherlands: Backhuys Publishers, pp. 321384.Google Scholar
Aleya, L. (1991) The concept of ecological succession applied to an eutrophic lake through the seasonal coupling of diversity index and several parameters. Archives für Hydrobiologie 120, 327343.CrossRefGoogle Scholar
Aleya, L., Devaux, J., El Magouri, H., Marvalin, O. and Amblard, C. (1988) Usefulness of simultaneous use of several methods for the estimation of phytoplanktonic biomass. European Journal of Protistololgy 23, 334342.Google Scholar
Aleya, L., Hartmann, H.J. and Devaux, J. (1992) Evidence for the contribution of ciliates to denitrification in a eutrophic lake. European Journal of Protistololgy 28, 316321.Google Scholar
Allen, J.I., Siddorn, J.R., Blackford, J.C. and Gilbert, F.J. (2004) Turbulence as a control on the microbial loop in a temperate seasonally stratified marine systems model. Journal of Sea Research 52, 120.CrossRefGoogle Scholar
Amblard, C., Bourdier, G., Sime-Ngando, T., Rachiq, S. and Carrias, J.F. (1994) Diel and vertical variations of the microbial stocks (bacteria, heterotrophic flagellates, ciliates, phytoplankton) and their relative activities. Archiv für Hydrobiologie 41, 125144.Google Scholar
Astraldi, M., Gasparini, G.P., Vetrano, A. and Vignudelli, A. (2002) Hydrodynamics characteristics and interannual variability of water masses in the central Mediterranean: a sensitivity test for long-term changes in the Mediterranean Sea. Deep-Sea Research 49, 661680.CrossRefGoogle Scholar
Balech, E. (1959) Tintinnoinea del Mediterraneo. Trabajos del Instituto Español de Oceanografia 28, 188.Google Scholar
Balech, E. (1988) Los dinoflagelados del Atlantico sudoccidental. Madrid: Instituto Español de Oceanografia (Publicaciones especiales), 309 pp.Google Scholar
Bel Hassen, M., Drira, Z., Hamza, A., Ayadi, H., Akrout, F., Messaoudi, S., Issaoui, H., Aleya, L. and Bouain, A. (2009) Plankton-pigment signatures and their relationship to spring–summer stratification in the south-eastern Mediterranean. Estuarine, Coastal and Shelf Science 83, 296306.CrossRefGoogle Scholar
Ben Romdhane, M., Brahim, N., Ouali, J. and Mercier, E. (2002) Tectonique quaternaire et plis de rampe dans le Golfe d'Hammamet (offshore Tunisien). Compte Rendus Géoscience 338, 341348.Google Scholar
Bourrelly, P. (1985) Les algues d'eau douce. Initiation à la systèmatique. Tome II. Les algues bleues et rouges. Les Eugléniens, Peridiniens et Cryptomonadines. Paris: Société Nouvelle des Editions Boubée, 606 pp.Google Scholar
Calbet, A. and Saiz, E. (2005) The ciliate–copepod link in marine ecosystems. Aquatic Microbial Ecology 38, 157165.CrossRefGoogle Scholar
Campbell, A.S. (1942) The open sea Tintinnoina of the plankton gathered during the last cruise of the Carnegie. Scientific results of Cruise VII of the Carnegie during 1928–1929 under command of Captain J.P. Ault. Richmond, VA: Byrd Press and Carnegie Institution of Washington, Publications 537, pp, 1163.Google Scholar
Decembrini, F., Caroppo, C. and Azzaro, M. (2009) Size structure and production of phytoplankton community and carbon pathways channelling in the Southern Tyrrhenian Sea (Western Mediterranean). Deep-Sea Research 56, 687699.Google Scholar
Dodge, J.D. (1985) Atlas of dinoflagellates. A scanning electron microscope survey. London: Ferrand Press, 119 pp.Google Scholar
Dolan, J.R. and Marrasé, C. (1995) Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, NW Mediterranean, June 1993. Deep-Sea Research 42, 19651987.Google Scholar
Dolan, J.R., Claustre, H., Carlotti, F., Plounevez, S. and Moutin, T. (2002) Microzooplankton diversity: relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean. Deep-Sea Research 49, 12171232.Google Scholar
Dolan, J.R., Lemée, R., Gasparini, S., Mousseau, L. and Heyndrick, C. (2006) Probing diversity in the plankton: using patterns in tintinnids (planktonic marine ciliates) to identify mechanisms. Hydrobiologia 555, 143157.Google Scholar
Drira, Z., Hamza, A., Bel Hassen, M., Ayadi, H., Bouaïn, A. and Aleya, L. (2008) Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabès (Tunisia, Eastern Mediterranean Sea). Scientia Marina 72, 5971.Google Scholar
Drira, Z., Bel Hassen, M., Hamza, A., Rebai, A., Bouaïn, A., Ayadi, H. and Aleya, L. (2009) Spatial and temporal variations of microphytoplankton composition related to hydrographic conditions in the Gulf of Gabès. Journal of the Marine Biological Association of the United Kingdom 89, 15591569.Google Scholar
Drira, Z., Bel Hassen, M., Hamza, A., Rebai, A., Bouaïn, A., Ayadi, H. and Aleya, L. (2010) Coupling of phytoplankton community structure to nutrients, ciliates and copepods in the Gulf of Gabès (South Ionian Sea, Tunisia). Journal of the Marine Biological Association of the United Kingdom 90, 12031215.CrossRefGoogle Scholar
Elloumi, J., Carrias, J.F., Ayadi, H., Sime-Ngando, T., Boukhris, M. and Bouain, A. (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuarine, Coastal and Shelf Science 67, 2129.CrossRefGoogle Scholar
Elloumi, J., Guermazi, W., Ayadi, H., Bouaïn, A. and Aleya, L. (2009) Abundance and biomass of prokaryotic and eukaryotic microorganisms coupled with environmental factors in an arid multi-pond solar saltern (Sfax, Tunisia). Journal of the Marine Biological Association of the United Kingdom 89, 243253.CrossRefGoogle Scholar
Fileman, E., Smith, T. and Harris, R. (2007) Grazing by Calanus helgolandicus and Para-Pseudocalanus spp. On phytoplankton and protozooplankton during the spring bloom in the Celtic Sea. Journal of Experimental Marine Biology and Ecology 348, 7084.Google Scholar
Godhantaraman, N. and Krishnamurthy, K. (1997) Experimental studies on food habits of tropical microzooplankton (prey–predator interrelationship). Indian Journal of Marine Sciences 26, 345349.Google Scholar
Grancini, G. and Michelato, A. (1987) Current structure and variability in the Strait of Sicily and adjacent area. Annales Geophysicae 5, 7588.Google Scholar
Hamza, A. and El Abed, A. (1994) Les eaux colorées dans le golfe de Gabès: Bilan de six ans de surveillance (1989–1994). Bulletin de l'Institut National des Sciences et Technologies de la Mer 21, 6672.Google Scholar
Hannachi, I., Drira, Z., Bel Hassen, M., Hamza, A., Ayadi, H., Bouain, A. and Aleya, L. (2009) Abundance and biomass of the ciliate community during a spring cruise in the Gulf of Gabès (East Mediterranean Sea, Tunisia). Acta Protozoologica 47, 293305.Google Scholar
Herut, B., Zohary, T., Krom, M.D., Fauzi, R., Mantoura, C., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T. and Thingstad, T.F. (2005) Response of east Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep-Sea Reserach 52, 30243040.Google Scholar
Huber-Pestalozzi, G. (1968) Das phytoplankton des Susswassars, Halfte, Cryptophyceae, Chloromonadophyceae, Dinophyceae. Stuttgart: E. Schweizerbart Verlag, 322 pp.Google Scholar
James, M.R. and Hall, J.A. (1995) Planktonic ciliated protozoa: their distribution and relationship to environment variables in a marine coastal ecosystem. Journal of Plankton Research 17, 659683.CrossRefGoogle Scholar
Johansson, M., Gorokhirra, E. and Larsson, U.L.F. (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. Journal of Plankton Research 26, 6780.Google Scholar
Jugnia, L.B., Tadonléké, R.D., Simi-Ngando, T. and Devaux, J. (2000) The microbial food web in the recently flooded Sep reservoir: diel fluctuations in bacterial biomass and metabolic activity in relation to phytoplankton and flagellate grazers. Microbial Ecology 40, 317329.Google Scholar
Karayanni, H., Christaki, U., Wambeke, F.V. and Dalby, A.P. (2004) Evaluation of double formalin–Lugol's fixation in assessing number and biomass of ciliates: an example of estimations at mesoscale in NE Atlantic. Journal of Microbiological Methods 56, 349358.Google Scholar
Kchaou, N., Elloumi, J., Drira, Z., Hamza, A., Ayadi, H., Bouain, A. and Aleya, L. (2009) Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabès, Tunisia. Estuarine, Coastal and Shelf Science 83, 414424.CrossRefGoogle Scholar
Kivi, K. and Setala, O. (1995) Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). Marine Ecology Progress Series 119, 125137.CrossRefGoogle Scholar
Kofoid, C.A. and Campbell, A.S. (1929) A conspectus of the marine and freshwater Ciliata belonging to the suborder Tintinnoinea, with descriptions of new species principally from the Agassiz expedition to the eastern tropical Pacific 1904–1905. University of California Publications in Zoology 34, 1403.Google Scholar
Kofoid, C.A. and Campbell, A.S. (1939) The Tintinnoinea of the eastern tropical Pacific. Bulletin of the Museum of Comparative Zoology at Harvard College 84, 1473.Google Scholar
Kress, N., Thingstad, T.F., Pitta, P., Psarra, S., Tanaka, T., Zohary, T., Groom, S., Herut, B., Mantoura, R.F.C., Polychronaki, T., Rassoulzadegan, F., Spyres, G. (2005) Effect of P and N addition to oligotrophic eastern Mediterranean waters influenced by near-shore waters: a microcosm experiment. Deep-Sea Research 52, 30543073.Google Scholar
Krom, M.D., Brenner, S., Kress, N. and Gordon, L.I. (1991) Phosphorus limitation of primary productivity in the E Mediterranean Sea. Limnology and Oceanography 36, 424432.Google Scholar
Lohmann, H. (1908) Untersuchungen zur Feststellung des Vollständigen Gehaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchungen 10, 131170.Google Scholar
Lynn, D.H. and Small, E.B. (1997) A revised classification of the phylum Ciliophora Doflein, 1901. Revista de la Sociedad de la Historia Natural de Mexico 47, 6578.Google Scholar
Manzella, G.M.R., Gasparini, G.P. and Astraldi, M. (1988) Water exchange between the Eastern and Western Mediterranean through the Strait of Sicily. Deep-Sea Research 35, 10211035.CrossRefGoogle Scholar
Marty, J.C., Chiaverini, J., Pizay, M.D. and Avril, B. (2002) Seasonal and inter-annual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999). Deep-Sea Research 49, 19651985.Google Scholar
Menden-Deuer, S. and Lessard, E.J. (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45, 569579.Google Scholar
Patriat, M., Ellouz, N., Dey, Z., Gaulier, J.M. and Ben Kilani, H. (2003). The Hammamet, Gabès and Chotts basins (Tunisia): a review of the subsidence history. Sedimentary Geology 156, 241262.Google Scholar
Patterson, M., West, M., Lawthom, R. and Nickell, S. (1997) The impact of people management on business performance. London: IPD.Google Scholar
Petz, W. (1999) Ciliophora. In Boltovsky, D. (ed.) South Atlantic zooplankton. Volume 2. Leiden, The Netherlands: Backhuys Publishers, pp. 265319.Google Scholar
Pielou, E.C. (1975) Ecological diversity. New York: Wiley Interscience.Google Scholar
Poulain, P.M. and Zambianchi, E. (2007) Near-surface circulation in the central Mediterranean Sea as deduced from Lagrangian drifters in the 1990s. Continental Shelf Research 27, 9811001.Google Scholar
Premke, K. and Arndt, H. (2000) Predation on heterotrophic flagellates by protists: food selectivity determined using a live-staining technique. Archives für Hydrobiologie 150, 1728.Google Scholar
Putt, M. and Stoecker, D.K. (1989) An experimentally determined carbon: volume ratio for marine ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnology and Oceanography 34, 10971103.CrossRefGoogle Scholar
Resende, P., Azeiteiro, U.M., Gonçalves, F. and Pereira, M.J. (2007) Distribution and ecological preferences of diatoms and dinoflagellates in the west Iberian Coastal zone (North Portugal). Acta Oecologica 32, 224235.Google Scholar
Reynolds, C.S. (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Excellence in Ecology, 9. Oldendorf, Germany: Ecology Institute, 371 pp.Google Scholar
Reynolds, C.S. (1998) What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369/370, 1126.Google Scholar
Sammari, C. and Brahim, M. (1996) Hydrodynamique de la région Nord- Tunisie/Sicile/Sardaigne durant le printemps 1995. Bulletin de l'Institut National des Sciences et Technologies de la Mer 23, 532.Google Scholar
Shannon, C.E. and Weaver, G. (1949) The mathematical theory of communication. Urbana, Chicago, IL: University of Illinois Press, 118 pp.Google Scholar
Simek, K., Bobkova, J., Macek, M., Nemoda, J. and Psenner, R. (1995) Ciliates grazing on picoplankton in a eutrophic reservoir during summer phytoplankton maximum: a study at the species and community level. Limnology and Oceanography 40, 10771090.CrossRefGoogle Scholar
Siokou-Frangou, I., Christaki, U., Mazzocchi, M.G., Montresor, M., Ribera d'Alcala, M., Vaque, D. and Zingone, A. (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7, 15431586.Google Scholar
Stemmann, L., Gorsky, G., Marty, J.K., Picheral, M. and Miquel, J.C. (2002) Four-year study of large-particle vertical distribution (0–1000 m) in the NW Mediterranean in relation to hydrology, phytoplankton, and vertical flux. Deep-Sea Research 49, 21432162.Google Scholar
Strüder-Kypke, M.C. and Montagnes, D.J.S. (2002) Development of web-based guides to planktonic protists. Aquatic Microbial Ecology 27, 203207.Google Scholar
Thingstad, F., Zweifel, U.L. and Rassoulzadegan, F. (1998) Limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnology and Oceanography 43, 3344.Google Scholar
Tomas, C.R., Hasle, G.R., Syvertsen, E.E., Steidinger, K.A., Tanger, K., Throndsen, J., Heimdal, B.R. (1996). In Tomas, C. (ed.) Identifying marine phytoplankton. San Diego, CA: Academic Press, 589 pp.Google Scholar
Tregouboff, G. and Rose, M. (1957) Manuel de planctonologie méditerranéenne. Volume II. Paris: CNRS, 592 pp.Google Scholar
Turley, C.M., Newell, R.C. and Robins, D.B. (1986) Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Marine Ecology Progress Series 33, 5970.Google Scholar
Utermöhl, H. (1958) Zurvervolkommungder quantitativen phytoplankton Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte. Limnologie 9, 138.Google Scholar
Vadrucci, M.R., Cabrini, M. and Basset, A. (2007) Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion. Transitional Waters Bulletin 2, 83102.Google Scholar
Wright, S.W. and Jeffrey, S.J.W. (2006) Pigment markers for phytoplankton production. In Volkman, J.K. (ed.) Marine organic matter-biomarkers, isotopes and DNA. Handbook of environmental chemistry 2, Part N. New York: Springer, pp. 71104.CrossRefGoogle Scholar
Zinabu, G.M. and Bott, T.L. (2000) The effects of formalin and Lugol's iodine solution on protozoal cell volume. Limnologica 30, 563.Google Scholar