Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T05:57:47.188Z Has data issue: false hasContentIssue false

Spatial patterns and seasonal fluctuations of intertidal macroalgal assemblages from Tarifa Island, southern Spain: relationship with associated Crustacea

Published online by Cambridge University Press:  01 September 2010

José M. Guerra-García*
Affiliation:
Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
M. Pilar Cabezas
Affiliation:
Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
Elena Baeza-Rojano
Affiliation:
Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
J. Carlos García-Gómez
Affiliation:
Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
*
Correspondence should be addressed to: J.M. Guerra-García, Laboratorio de Biología Marina, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012, Sevilla, Spain email: [email protected]

Abstract

The dominant intertidal algal species from Tarifa Island, Strait of Gibraltar, together with the associated peracarid crustacean community, were studied over a two-year period (December 2005–December 2007). Gelidium corneum and Gymnogongrus patens were dominant at the lower levels, close to the subtidal. Valonia utricularis, Osmundea pinnatifida, a turf of Caulacanthus ustulatus and Gelidium spp., Corallina elongata and Jania rubens were distributed in intermediate levels, while Ulva rigida, Chaetomorpha aerea and Fucus spiralis were collected from upper levels. The main intertidal seaweeds of Tarifa Island showed a perennial behaviour, but maximum values of biomass were registered during late spring and beginning of summer for most of species while the highest seawater temperatures were measured in late summer and beginning of autumn. Corallina elongata and Jania rubens, the dominant species which shared a niche at platforms of intermediate levels, showed an opposite behaviour, probably to avoid competence: C. elongata showed higher biomass in April–June and lower values in August–October–December, while biomass of J. rubens was higher in December–February and lower in April–August. Associated crustaceans, including mainly amphipods (gammarids and caprellids) were also present throughout the whole year with similar seasonality to seaweeds. However, crustacean density in the intertidal was not only influenced by distribution of algae as substrate, but also by external factors, such as hydrodynamism, oxygen, weather conditions, competition or predation. The present study constitutes the first baseline study dealing with seasonal fluctuations of algae and associated crustaceans in a protected area of the Strait of Gibraltar, an important biogeographical zone between Europe and Africa and the Mediterranean and Atlantic.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anadón, R. and Fernández, C. (1986) Comparación de tres comunidades de horizontes intermareales con abundancia de Gelidium latifolium (Grez.) Born. et Tour. en la costa de Asturias (N de España). Investigaciones Pesqueras 50, 353366.Google Scholar
Araújo, R., Bárbara, I., Sousa-Pinto, I. and Quintito, V. (2005) Spatial variability of intertidal rocky shore assemblages in the northwest coast of Portugal. Estuarine, Coastal and Shelf Science 64, 658670.CrossRefGoogle Scholar
Ballesteros, E. (1988) Composición y estructura de la comunidad infralitoral de Corallina elongata Ellis & Solander, 1786, de la Costa Brava (Mediterráneo occidental). Investigaciones Pesqueras 52, 135151.Google Scholar
Bolton, J.J., Leliaert, F., De Clerck, O., Anderson, R.J., Stegenga, H., Engledow, H.E. and Coppejans, E. (2004) Where is the western limit of the tropical Indian Ocean seaweed flora? An analysis of intertidal seaweed biogeography on the east coast of South Africa. Marine Biology 144, 5159.CrossRefGoogle Scholar
Choi, T.S. and Kim, K.Y. (2004) Spatial pattern of intertidal macroalgal assemblages associated with tidal levels. Hydrobiologia 512, 4956.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2001) Primer (Plymouth Routines in Multivariate Ecological Research) v5: User Manual/Tutorial. Plymouth: PRIMER-E Ltd., 91 pp.Google Scholar
Connell, J.H. (1972) Community interactions on marine rocky intertidal shores. Annual Review of Ecological Systems 3, 169192.CrossRefGoogle Scholar
Costello, M.J. and Myers, A.A. (1987) Amphipod fauna of the sponges Halichondria panacea and Hymeniacidon perleve in Lough Hyne, Ireland. Marine Ecology Progress Series 41, 115121.CrossRefGoogle Scholar
Davison, I.R. and Pearson, G.A. (1996) Stress tolerance in intertidal seaweeds. Journal of Phycology 32, 197211.CrossRefGoogle Scholar
Díez, I., Secilla, A., Santolaria, A. and Gorostiaga, J.M. (1999) Phytobenthic intertidal community structure along an environmental pollution gradient. Marine Pollution Bulletin 38, 463472.CrossRefGoogle Scholar
Díez, I., Santolaria, A. and Gorostiaga, J.M. (2003) The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain). Estuarine, Coastal and Shelf Science 56, 10411054.CrossRefGoogle Scholar
Fa, D.A., Finlayson, C., García-Adiego, E., Sánchez-Moyano, J.E. and García-Gómez, J.C. (2002) Influence of some environmental factors on the structure and distribution of the rocky shore macrobenthic communities in the Bay of Gibraltar: preliminary results. Almoraima 28, 7388.Google Scholar
García-Gómez, J.C., Corzo, J.R., López-Fe, C.M., Sánchez-Moyano, J.E., Corzo, M., Rey, J., Guerra-García, J.M. and García-Asencio, I.M. (2003) Metodología cartográfica submarina orientada a la gestión y conservación del medio litoral: mapa de las comunidades bentónicas del frente litoral norte del Estrecho de Gibraltar. Boletín Instituto Español de Oceanografía 19, 149163.Google Scholar
García-Raso, J.E. (1988) Consideraciones generales sobre la taxocenosis de crustáceos decápodos de fondos de concrecionamiento calcáreo superficial del alga Mesophyllum lichenoides (Ellis and Sol.) Lemoine (Corallinaceae) del mar de Alborán. Investigaciones Pesqueras 52, 245264.Google Scholar
Gorostiaga, J.M., Santolaria, A., Secilla, A. and Diez, I. (1998) Sublittoral benthic vegetation of the eastern Basque coast (N. Spain): structure and environmental factors. Botanica Marina 41, 455465.CrossRefGoogle Scholar
Guerra-García, J.M. and García-Gómez, J.C. (2000) La fauna submarina de la Isla de las Palomas (Tarifa, Cádiz). In Temas de Flora, Fauna y Ecología del Campo de Gibraltar. Campo de Gibraltar, Spain: Cuadernos del Instituto II, pp 717.Google Scholar
Guerra-García, J.M., Sánchez-Moyano, J.E., Corzo, J., Moreno, S. and García-Gómez, J.C. (2000) Descripción de las comunidades de algas de la Isla de la Palomas (Tarifa) y de otros enclaves del sur de España. Almoraima 23, 189194.Google Scholar
Guerra-García, J.M., Maestre, M.J., González, A.R., García-Gómez, J.C. (2006) Assessing a quick monitoring method using rocky intertidal communities as a bioindicador: a multivariate approach in Algeciras Bay. Environmental Monitoring and Assessment 116, 345361.CrossRefGoogle Scholar
Guerra-García, J.M., Cabezas, P., Baeza-Rojano, E., Espinosa, F. and García-Gómez, J.C. (2009) Is the north side of the Strait of Gibraltar more diverse than the south side? A case study using the intertidal peracarids (Crustacea: Malacostraca) associated to the seaweed Corallina elongata. Journal of the Marine Biological Association of the United Kingdom 89, 387397.CrossRefGoogle Scholar
Kautsky, H. and van der Maarel, E. (1990) Multivariate approaches to the variation in phytobenthic communities and environmental vectors in the Baltic Sea. Marine Ecology Progress Series 60, 169184.CrossRefGoogle Scholar
Lobban, C. and Harrison, P.J. (1994) Seaweed ecology and physiology. New York: Cambridge University Press, 366 pp.CrossRefGoogle Scholar
Martins, G.M., Thompson, R.C., Hawkins, S.J., Neto, A.I. and Jenkins, S.R. (2008) Rocky intertidal community structure in oceanic islands: scales of spatial variation. Marine Ecology Progress Series 356, 1524.CrossRefGoogle Scholar
McCune, B. and Mefford, M.J. (1997) PC-ORD. Multivariate Analysis of Ecological Data. Gleneden Beach: MJM Software Design, 77 pp.Google Scholar
Morgan, N.H.W. and Mathieson, A.C. (1983) Intertidal macroalgae and macroinvertebrates: seasonal and spatial abundance patterns along an estuarine gradient. Estuarine, Coastal and Shelf Science 16, 113129.Google Scholar
Mouradi-Givernaud, A., Hassani, L.A., Givernaud, T., Lemoine, Y. and Benharbet, O. (1999) Biology and agar composition of Gelidium sesquipedale harvested along the Atlantic coast of Morocco. Hydrobiologia 399, 391395.CrossRefGoogle Scholar
Neto, A.I. (2000a) Observations on the biology and ecology of selected macroalgae from the littoral of São Miguel (Azores). Botanica Marina 43, 483498.CrossRefGoogle Scholar
Neto, A.I. (2000b) Ecology and dynamics of two intertidal algal communities on the litoral of the island of São Miguel (Azores). Hydrobiologia 432, 135147.CrossRefGoogle Scholar
Parmesan, C. and Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 3742.CrossRefGoogle ScholarPubMed
Pedersén, M. and Snoeijs, P. (2001) Patterns of macroalgal diversity, community composition and long-term changes along the Swedish west coast. Hydrobiologia 459, 83102.CrossRefGoogle Scholar
Pereira, S.G., Lima, F.P., Queiroz, N.C., Ribeiro, P.A. and Santos, A.M. (2006) Biogeographic patterns of intertidal macroinvertebrates and their association with macroalgae distribution along the Portuguese coast. Hidrobiologia 555, 185192.CrossRefGoogle Scholar
Poore, A.G.B. (1994) Selective herbivory by amphipods inhabiting the brown alga Zonaria angustata. Marine Ecology Progress Series 107, 113123.CrossRefGoogle Scholar
Prathep, A., Marrs, R.H. and Norton, T.A. (2003) Spatial and temporal variations in sediment accumulation in an algal turf and their impact on associated fauna. Marine Biology 142, 381390.CrossRefGoogle Scholar
Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C. and Pounds, J.A. (2003) Fingerprints of global warming on wild animals and plants. Nature 421, 5760.CrossRefGoogle ScholarPubMed
Sala, E. and Boudouresque, C.F. (1977) The role of fishes in the organization of a Mediterranean sublittoral community. I: Algal communities. Journal of Experimental Marine Biology and Ecology 212, 2544.CrossRefGoogle Scholar
Sánchez-Moyano, J.E. and García-Gómez, J.C. (1998) The arthropod community, especially Crustacea, as a bioindicador in Algeciras Bay (Southern Spain) based on a spatial distribution. Journal of Coastal Research 14, 11191133.Google Scholar
Simkanin, C., Power, A.M., Myers, A., McGrath, D., Southward, A., Mieskowska, N., Leaper, R. and O'Riordan, R. (2005) Using historical data to detect temporal changes in the abundance of intertidal species on Irish shores. Journal of the Marine Biological Association of the United Kingdom 85, 13291340.CrossRefGoogle Scholar
Soeder, C. and Stengel, E. (1974) Physico-chemical factors affecting metabolism and growth rate. In Stewart, W.D.P. and Pierce, C.E. (eds) Algal physiology and biochemistry. Oxford: Blackwell, pp. 714740.Google Scholar
Underwood, A.J. (1981) Structure of a rocky intertidal community in New South Wales: patterns of vertical distribution and seasonal changes. Journal of Experimental Marine Biology and Ecology 51, 5785.CrossRefGoogle Scholar
Zhuang, S.H., Chen, L.X., Zhang, M. and Cao, Y.D. (2004) Seasonality of macroalgal assemblages in a wave-eroded intertidal granite shore at Chengshan Cape, on the northwest coast of the Yellow Sea. Hydrobiologia 529, 145156.CrossRefGoogle Scholar
Zidane, H., Orbi, A., Sqalli, N., Zidane, F., Talbaoui, M., Hasnaoui, M. and Fakhaoui, M. (2006) Survey of the cycle of reproduction of red algae Gelidium sesquipedale (Turner) Thuret (case of the maritime zone of El Jadida-Jarf Lasfer of Morocco). Environmental Technology 27, 993–943.CrossRefGoogle ScholarPubMed