Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T17:12:16.491Z Has data issue: false hasContentIssue false

Spatial and temporal variation of planktonic cnidarian density in subtropical waters of the Southern Brazilian Bight

Published online by Cambridge University Press:  24 June 2014

Renato Mitsuo Nagata*
Affiliation:
Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, Cidade Universitária, CEP 05508-090, São Paulo, Brazil
Miodeli Nogueira Júnior
Affiliation:
Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB, 58051-900, Brazil
Frederico Pereira Brandini
Affiliation:
Instituto Oceanográfico, Departamento de Oceanografia Biológica, Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, CEP 05508-120, São Paulo, Brazil
Maria Angélica Haddad
Affiliation:
Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Universidade Federal do Paraná, Centro Politécnico, CEP 81531-990, Curitiba, Brazil
*
Correspondence should be addressed to: R.M. Nagata, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 101, Cidade Universitária, CEP 05508-090, São Paulo, Brazil email: [email protected]

Abstract

The spatial and temporal variations of planktonic cnidarians were studied across the inner continental shelf (≤40 m) off the State of Paraná in southern Brazil. Monthly zooplankton samples were taken between November 1997 and March 1999 at five stations. The holoplanktonic Liriope tetraphylla and Muggiaea kochi dominated during the entire period, comprising >80% of the specimens. The coast–ocean gradient became evident due to a near-coastal (≤20 m) assemblage formed by L. tetraphylla, Solmaris corona and meroplanktonic medusae, and a distinct outer (25–40 m) assemblage formed by the medusae Corymorpha gracilis and Aglaura hemistoma and siphonophores. The estuarine runoff during warm rainy periods lowered the salinity (~30) at the inner stations (1, 2 and 3), providing appropriate conditions for the estuarine/coastal species. Wind-driven onshore advection of outer-shelf species to the inner isobaths occurred from late autumn to winter, when the rainfall decreased and salinity increased (>35). Population peaks occurred in both summer and winter at the inner stations. For most species, the seasonal patterns were inconsistent with other studies conducted in the Southern Brazilian Bight, suggesting irregular and unpredictable seasonal distributions of abundance. Whereas in high-latitude ecosystems the dynamics of cnidarian populations follows the seasonal productivity cycle, here, complex hydrographic processes seem to be more important in determining the structure and seasonal dynamics of this community.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abreu, P.C.O.V. and Nogueira, C.R. (1989) Spatial distribution of Siphonophora species at Rio de Janeiro coast, Brazil. Ciência & Cultura 41, 892902.Google Scholar
Arai, M.N. (1992) Active and passive factors affecting aggregations of hydromedusae: a review. In Bouillon, J., Boero, F., Cicogna, F., Gili, J.M. and Hughes, R.G. (eds) Aspects of hydrozoan biology. Scientia Marina 56 99108.Google Scholar
Attayde, J.L., and Bozelli, R.L. (1998) Assessing the indicator properties of zooplankton assemblages to disturbance gradients by canonical correspondence analysis. Canadian Journal of Fisheries and Aquatic Sciences 55, 17891797.CrossRefGoogle Scholar
Ballard, L. and Myers, A. (2000) Observations on the seasonal occurrence and abundance of gelatinous zooplankton in Lough Hyne, Co. Cork, South-West Ireland. Biology and Environment: Proceedings of the Royal Irish Academy 100, 7583.Google Scholar
Boero, F., Bouillon, J., Gravili, C., Miglietta, M.P., Parsons, T. and Piraino, S. (2008) Gelatinous plankton: irregularities rule the world (sometimes). Marine Ecology Progress Series 356, 299310.CrossRefGoogle Scholar
Boero, F., Bucci, C., Colucci, A.M.R., Gravili, C. and Stabili, L. (2007) Obelia (Cnidaria, Hydrozoa, Campanulariidae): a microphagous, filter-feeding medusa. Marine Ecology 28, 178183.CrossRefGoogle Scholar
ter Braak, C.J.F. and Smilauer, P. (1998) CANOCO Reference Manual and User's Guide to CANOCO for Windows: Software for Canonical Community Ordination (Version 4). Ithaca, NY: Microcomputer Power.Google Scholar
Brandini, F.P., Silva, A.S., Silva, E.T. and Kolm, H. (2007) Sources of nutrients and seasonal dynamics of chlorophyll in the inner shelf off Paraná State–Southern Brazilian Bight. Journal of Coastal Research 23, 11311140.CrossRefGoogle Scholar
Buecher, E., Goy, J., Planque, B., Etienne, M. and Dallot, S. (1997) Long-term fluctuations of Liriope tetraphylla in Villefranche Bay between 1966 and 1993 compared to Pelagia noctiluca pullulations. Oceanologica Acta 20, 145157.Google Scholar
Carré, D. and Carré, C. (1990) Complex reproductive cycle in Eucheilota paradoxica (Hydrozoa: Leptomedusae): medusae, polyps and frustules produced from medusa stage. Marine Biology 104, 303310.CrossRefGoogle Scholar
Carré, C. and Carré, D. (1991) A complete life cycle of the calycophoran siphonophore Muggiaea kochi (Will) in the laboratory, under different temperature conditions: ecological implications. Philosophical Transactions of the Royal Society London, B 334, 2732.Google Scholar
Castro, B.M., Brandini, F.P., Pires-Vanin, A.M.S. and Miranda, L.B. (2006) Multidisciplinary oceanographic processes on the Western Atlantic Continental Shelf located between 4N and 34S. In Robinson, A.R. and Brink, K.H. (eds) The sea. Volume 14. New York: Wiley, pp. 259293.Google Scholar
Castro, B.M. and Miranda, L.B. (1998) Physical oceanography of the western Atlantic continental shelf located between 4°N and 34°S–coastal segment (4, W). In Robinson, A.R. and Brink, K.H. (eds) The sea. Volume 11. New York: Wiley, pp. 209251.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth: PRIMER-E Ltd.Google Scholar
Colin, S.P., Costello, J.H., Graham, W.H. and Higgins III, J. (2005) Omnivory by the small cosmopolitan hydromedusa Aglaura hemistoma. Limnology and Oceanography 50, 12641268.CrossRefGoogle Scholar
Cordeiro, T.A. and Montú, M. (1991) Distribuição dos Siphonophorae: Calycophorae (Cnidaria) em relação às massas de água, ao largo dos estados do Paraná e Santa Catarina, Brasil (28°S–31°S). Nerítica 6, 107126.Google Scholar
Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., Mcfadden, C.S., Opresko, D.M., Rodriguez, E., Romano, S.L. and Stake, J.L. (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668, 127182.CrossRefGoogle Scholar
Fernandes, L.F. and Brandini, F.P. (2004) Diatom associations in shelf waters off Paraná State, Southern Brazil: annual variation in relation to environmental factors. Brazilian Journal of Oceanography 52, 1934.CrossRefGoogle Scholar
Garcia, A.M., Vieira, J.P. and Winemiller, K.O. (2001) Dynamics of the shallow-water fish assemblage of the Patos Lagoon estuary (Brazil) during cold and warm ENSO episodes. Journal of Fish Biology 59, 12181238.Google Scholar
Genzano, G., Mianzan, H., Díaz-Briz, L. and Rodríguez, C. (2008) On the occurrence of Obelia medusa blooms and empirical evidence of unusual massive accumulations of Obelia and Amphisbetia hydroids on the Argentina shoreline. Latin American Journal of Aquatic Research 36, 301307.CrossRefGoogle Scholar
Graham, W.M., Pagès, F. and Hamner, W.M. (2001) A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia 451, 199212.CrossRefGoogle Scholar
Gibbons, M.J. and Richardson, A.J. (2009) Patterns of jellyfish abundance in the North Atlantic. Hydrobiologia 616, 5165.CrossRefGoogle Scholar
Greve, W., Reiners, F., Nast, J.Hoffmann, S. (2004) Helgoland Roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgoland Marine Research 58, 274288.CrossRefGoogle Scholar
Haddad, M.A. and Nogueira, M. (2006) Reappearance and seasonality of Phyllorhiza punctata von Lendenfeld (Cnidaria; Scyphozoa; Rhizostomeae) medusae in southern Brazil. Revista Brasileira de Zoologia 23, 824831.CrossRefGoogle Scholar
Hosia, A. and Båmstedt, U. (2007) Seasonal changes in the gelatinous zooplankton community and hydromedusa abundances in Korsfjord and Fanafjord, western Norway. Marine Ecology Progress Series 351, 113127.CrossRefGoogle Scholar
Hosia, A. and Båmstedt, U. (2008) Seasonal abundance and vertical distribution of siphonophores in western Norwegian fjords. Journal of Plankton Research 30, 951962.CrossRefGoogle Scholar
Kawamura, M. and Kubota, S. (2008) Influences of temperature and salinity on asexual budding by hydromedusa Proboscidactyla ornata (Cnidaria: Hydrozoa: Proboscidactylidae). Journal of the Marine Biological Association of the United Kingdom 88, 16011606.CrossRefGoogle Scholar
Lana, P.C., Marone, E., Lopes, R.M. and Machado, E.C. (2001) The subtropical estuarine complex of Paranaguá Bay, Brazil. Ecological Studies 144, 131145.CrossRefGoogle Scholar
Larson, R.J. (1986) Seasonal changes in the standing stocks, growth rates, and production rates of gelatinous predators in Saanich Inlet, British Columbia. Marine Ecology Progress Series 33, 8998.CrossRefGoogle Scholar
Legendre, P. and Legendre, L. (1998) Numerical ecology. 2nd edition. Amsterdam: Elsevier Science.Google Scholar
Licandro, P., Braconnot, J.C., Carré, C., Dallot, S., Etienne, M., Ibanez, F. and Moitié, M. (2001) Interannual variations of some species of gelatinous zooplankton (Siphonophora and Thaliacea) in a coastal long-term series in the North-Western Mediterranean. In Briand, F. (ed.) Gelatinous zooplankton outbreaks: theory and practice. Monaco: CIESM, pp. 5152.Google Scholar
Lopes, R.M., Katsuragawa, M., Dias, J.F., Montú, A.M., Muelbert, J.H., Gorri, C. and Brandini, F.P. (2006) Zooplankton and ichthyoplankton distribution in the southern Brazilian shelf: an overview. Scientia Marina 70, 189202.CrossRefGoogle Scholar
Mianzan, H.W. and Guerrero, R.A. (2000) Environmental patterns and biomass distribution of gelatinous macrozooplankton. Three study cases in the South-western Atlantic Ocean. Scientia Marina 64, 215224.CrossRefGoogle Scholar
Migotto, A.E., Marques, A.C., Morandini, A.C., and da Silveira, F.L. (2002) Checklist of the Cnidaria Medusozoa of Brazil. Neotropica 2, 130.CrossRefGoogle Scholar
Mills, C.E. (1981) Seasonal occurrence of planktonic medusae and ctenophores in the San Juan Archipelago (NE Pacific). Wasmann Journal of Biology 39, 629.Google Scholar
Mills, C.E. (1993) Natural mortality in NE pacific coastal hydromedusae: grazing predation, wound healing and senescence. Bulletin of Marine Science 53, 194203.Google Scholar
Montú, M. and Cordeiro, T.A. (1988) Zooplancton del complejo estuarial de la Bahía de Paranaguá. I. Composición, dinámica de las especies, ritmos reproductivos y acción de los factores ambientales sobre la comunidad. Nerítica 3, 6183.Google Scholar
Moreira, G.S. (1973) On the diurnal vertical migration of hydromedusae off Santos, Brazil. Publications of the Seto Marine Biological Laboratory 20, 537566.CrossRefGoogle Scholar
Navas-Pereira, D. (1980) Hydromedusae of the Bay of Sepetiba (Rio de Janeiro, Brazil). Revista Brasileira de Biologia 40, 817824.Google Scholar
Navas-Pereira, D. (1981) Distribuição das hidromedusas (Cnidaria, Hydrozoa) na região da plataforma continental do Rio Grande do Sul. In Academia Brasileira de Ci ências (eds) Seminários de biologia marinha. São Paulo: Academia Brasileira de Ciências, pp. 221276.Google Scholar
Nogueira, C.R. and Oliveira, S.R. Jr (1991) Siphonophora from the coast of Brazil (17°S–24°S). Boletim do Instituto Oceanográfico 39, 6169.CrossRefGoogle Scholar
Nogueira, M. Jr (2012) Gelatinous zooplankton fauna (Cnidaria, Ctenophora and Thaliacea) from Baía da Babitonga (southern Brazil). Zootaxa 3389, 121.Google Scholar
Nogueira, M. Jr, Nagata, R.M. and Haddad, M.A. (2010) Seasonal variation of macromedusae (Cnidaria) at North Bay, Florianópolis, southern Brazil. Zoologia 27, 377386.CrossRefGoogle Scholar
Poos, M.S. and Jackson, D.A. (2012) Addressing the removal of rare species in multivariate bioassessments: the impact of methodological choices Ecological Indicators 18, 8290.CrossRefGoogle Scholar
Pukanski, L.E.M. (2011) Dinâmica populacional das hidromedusas Liriope tetraphylla (Trachymedusae) e Blackfordia virginica (Leptothecata) na Baía da Babitonga–Litoral norte de Santa Catarina, Brasil. MSc thesis. Universidade Federal do Paraná, Brazil.Google Scholar
Purcell, J.E. (1982) Feeding and growth of the siphonophore Muggiaea atlantica (Cunningham 1893). Journal of Experimental Marine Biology and Ecology 62, 3954.CrossRefGoogle Scholar
Purcell, J.E. (1991) A review of cnidarians and ctenophores feeding on competitors in the plankton. Hydrobiologia 216/217, 335342.CrossRefGoogle Scholar
Purcell, J.E. and Arai, M.N. (2001) Interactions of pelagic cnidarians and ctenophores with fishes: a review. Hydrobiologia 451, 2744.CrossRefGoogle Scholar
Resgalla, C. Jr, de la Rocha, C. and Montú, M. (2001) The influence of Ekman transport zooplankton biomass variability off Southern Brazil. Journal Plankton Research 23, 641650.CrossRefGoogle Scholar
Sartori, L.P. and Lopes, R.M. (2000) Seasonal variability of pelagic copepod assemblages on the inner continental shelf off Paraná, Brazil. Nauplius 8, 7988.Google Scholar
Tronolone, V.B. (2001) Hidromedusas (Cnidaria, Hydrozoa) do canal de São Sebastião, SP. MSc thesis. Universidade de São Paulo, Brazil.Google Scholar
Tronolone, V.B. (2007) Estudo faunístico e da distribuição das hidromedusas (Cnidaria, Hydrozoa) da região compreendida entre Cabo Frio (RJ) e Cabo de Santa Marta Grande (SC), Brasil. PhD thesis. Universidade de São Paulo, Brazil.Google Scholar
Ugaz-Codina, J. (2003) Distribuição espaço-temporal das larvas de moluscos na plataforma continental interna (<50 m) do Estado do Paraná. MSc thesis. Universidade Federal do Paraná, Brazil.Google Scholar
Vannucci, M. (1957) On Brazilian hydromedusae and their distribution in relation to different water masses. Boletim do Instituto Oceanográfico 8, 23109.CrossRefGoogle Scholar
Vannucci, M. (1963) On the ecology of Brazilian Medusae at 25° lat. S. Boletim do Instituto Oceanográfico 13, 143184.CrossRefGoogle Scholar
Werner, B. (1963) Effect of some environmental factors on differentiation and determination in marine Hydrozoa, with a note on their evolutionary significance. Annals of the New York Academy of Sciences 105, 461488.CrossRefGoogle ScholarPubMed
Williams, R. and Conway, D.V.P. (1981) Vertical distribution and seasonal abundance of Aglantha digitale (O.F. Müller) (Coelenterata: Trachymedusae) and other planktonic coelenterates in the northeast Atlantic Ocean. Journal Plankton Research 3, 633643.CrossRefGoogle Scholar
Zamponi, M.O. and Genzano, G. (1994) Seasonal distribution of hydromedusae from Samborombon Bay (Buenos Aires, Argentina). Plankton Newsletter 19, 5156.Google Scholar