Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T17:19:34.346Z Has data issue: false hasContentIssue false

Skeletal growth bands in brittle stars: microstructure and significance as age markers

Published online by Cambridge University Press:  11 May 2009

J. D. Gage
Affiliation:
Scottish Marine Biological Association, Dunstaffnage Marine Laboratory, PO Box 3, Oban, Argyll, PA34 4AD

Abstract

Skeletal growth banding has been studied in the vertebral arm ossicles of the shallowwater brittle stars Ophiothrix fragilis, Amphiura filiformis, A. chiajei, Ophiura ophiura and O.

albida collected from near Oban. Scanning electron microscopy of ossicle microstructure show the bands reflect differences in stereom porosity and surface relief on the surface of the wing-like fossae of the ossicle. The evidence supports the interpretation of the bands as annual growth markers, with coarse-pored stereom laid down during periods of active growth in summer/autumn whilst finer-pored stereom, that often forms ‘breaking wave’- like ridges, is formed during periods of slow or negligible skeletal growth during the rest of the year. Growth curves fitted to growth ring measurements indicate three contrasting growth strategies amongst the species examined. These data generally support recent interpretations of demographic structure reached from studies of size frequencies in samples collected from other areas in the NE Atlantic range of these species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourcier, M., 1978. Production de matiere organique de quelques especes macrobenthiques dans les fonds detriques cotiers de la region de Cassis. Tethys, 8, 339343.Google Scholar
Bourgoin, A. & Guillou, M., 1988. Demographie d'Amphiura filiformis (Echinodermata: Ophiuroidea) en baie de Concarneau (Finistere, France). Oceanologica Acta, 11, 7987.Google Scholar
Bowmer, T., 1982. Aspects of the Biology and Ecology of Amphiura filiformis (O.F. Müller) (Echinodermata: Ophiuroidea). PhD Thesis, National University of Ireland.Google Scholar
Bowmer, T. & Keegan, , 1983. Field survey of the occurrence and significance of regeneration in Amphiura filiformis (Echinodermata: Ophiuroidea) from Galway Bay, west coast of Ireland. Marine Biology, 74, 6571.CrossRefGoogle Scholar
Buchanan, J.B., 1964. A comparative study of some features of the biology of Amphiura filiformis and Amphiura chiajei (Ophiuroidea) considered in relation to their distribution. Journal of the Marine Biological Association of the United Kingdom, 44, 565576.CrossRefGoogle Scholar
Buchanan, J.B., 1967. Dispersion and demography of some infaunal echinoderm populations. Symposia of the Zoological Society of London, no. 20, 111.Google Scholar
Deutler, F., 1926. Uber das Wachstum des Seeigelskeletts. Zoologische Jahrbucher (Abteilungen für Anatomie und Ontogenie der Tiere), 48, 119200.Google Scholar
Duco, A. & Roux, M., 1981. Modalites particulieres de croissance liees au milieu abyssal chez les Bathycrinidae (Echinodermes, Crinoidea pedoncules). Oceanologica Acta, 4, 389393.Google Scholar
Duineveld, G.C.A. & Van Noort, G.L., 1986. Observations on the population dynamics of Amphiura filiformis (Ophiuroidea: Echinodermata) in the southern North Sea and its exploitation by the dab, Limanda limanda. Netherlands Journal of Sea Research, 20, 8594.CrossRefGoogle Scholar
Emson, R.H. & Wilkie, I.C., 1980. Fission and autotomy in echinoderms. Oceanography and Marine Biology, an Annual Review, 18, 155250.Google Scholar
Emson, R.H. & Wilkie, I.C., 1982. The arm-coiling response in Amphipholis squamata (Delle Chiaje). In Echinoderms. Proceedings of the International Conference, Tampa Bay (ed. J.M., Lawrence), pp. 1118. Rotterdam: Balkema.Google Scholar
Feder, H.M., 1981. Aspects of the feeding biology of the brittle star Ophiura texturata. Ophelia, 20, 215235.CrossRefGoogle Scholar
Gage, J., 1972 a. Community structure of the benthos in Scottish sea-lochs. I. Introduction and species diversity. Marine Biology, 14, 281297.CrossRefGoogle Scholar
Gage, J., 1972 b. A preliminary survey of the benthic macrofauna and sediments in Lochs Etive and Creran, sea-lochs along the West coast of Scotland. Journal of the Marine Biological Association of the United Kingdom, 52, 237276.CrossRefGoogle Scholar
Gage, J.D. & Tyler, P.A., 1982. Growth strategies in deep-sea ophiuroids. In Echinoderms. Proceedings of the International Conference, Tampa Bay (ed. J.M., Lawrence), pp. 305311. Rotterdam: Balkema.Google Scholar
Gorzula, S.J., 1977. A study of growth in the brittle-star Ophiocomina nigra. Western Naturalist, 6, 1333.Google Scholar
Guillou, J. & Robert, R., 1980. Principaux aspects de la dynamique d'une population d'Ophiura texturata en Baie de Dournenez. In Proceedings of the European Colloquium on Echinoderms, Brussels, 1979 (ed. M., Jangoux), pp. 171177. Rotterdam: Balkema.Google Scholar
Hyman, L.H., 1955. Echinodermata, vol. 4. The Invertebrates. New York: McGraw-Hill.Google Scholar
Macurda, D.B., 1976. Skeletal modifications related to food capture and feeding behavior of the basketstar Astrophyton. Paleobiology, 2, 17.CrossRefGoogle Scholar
Morrison, G.W., 1979. Studies on the Ecology of the Sub-Antarctic Ophiuroid Ophionotus hexactis (E.A. Smith). MPhil Thesis, University of London.Google Scholar
Mortensen, T., 1927. Handbook of the Echinoderms of the British Isles. London: Oxford University Press.CrossRefGoogle Scholar
Muus, K., 1981. Density and growth of juvenile Amphiura filiformis (Ophiuroidea) in the Oresund. Ophelia, 20, 153168.CrossRefGoogle Scholar
Ockelmann, K. & Muus, K. (1978). The biology, ecology and behaviour of the bivalve Mysella bidentata (Montagu). Ophelia, 17, 193.CrossRefGoogle Scholar
O'connor, B., Bowmer, T. & Grehan, A., 1983. Long-term assessment of the population dynamics of Amphiura filiformis (Echinodermata: Ophiuroidea) in Galway Bay (west coast of Ireland). Marine Biology, 75, 279286.CrossRefGoogle Scholar
O'connor, B., Bowmer, T., McGrath, D. & Raine, R., 1986. Energy flow through an Amphiura filiformis (Ophiuroidea: Echinodermata) population in Galway Bay, west coast of Ireland: a preliminary investigation. Ophelia, 26, 351357.CrossRefGoogle Scholar
O'connor, B. & McGrath, D., 1980. The population dynamics of Amphiura filiformis (O.F. Müller) in Galway Bay, west coast of Ireland. In Proceedings of the European Colloquium on Echinoderms, Brussels, 1979 (ed. M., Jangoux), pp. 219222. Rotterdam: Balkema.Google Scholar
Pagett, R.M., 1980. Tolerance to brackish water by ophiuroids with special reference to a Scottish sea loch, Loch Etive. In Proceedings of the European Colloquium on Echinoderms, Brussels, 1979, (ed. M., Jangoux), pp. 223229. Rotterdam: Balkema.Google Scholar
Pearse, J.A. & Pearse, V.B., 1975. Growth zones in the echinoid skeleton. American Zoologist, 15, 731753.CrossRefGoogle Scholar
Ricker, W.E., 1979. Growth rates and models. In Fish Physiology, vol. 8 (ed. W.S., Hoaret al.), pp. 677743. New York: Academic Press.Google Scholar
Rosenburg, R. & Moller, P., 1979. Salinity stratified benthic macrofaunal communities and long-term monitoring along the west coast of Sweden. Journal of Experimental Marine Biology and Ecology, 37, 175203.CrossRefGoogle Scholar
Salzwedel, H.E., 1974. Arm-Regeneration bei Amphiura filiformis (Ophiuroidea). Veroffentlichungen des Instituts für Meeresforschung in Bremerhaven, 20, 199267.Google Scholar
Schnute, J., 1981. A versatile growth model with statistically stable properties. Canadian Journal of Fisheries and Aquatic Sciences, 38, 11281140.CrossRefGoogle Scholar
Schnute, J., 1982. A manual for easy nonlinear parameter estimation in fishery research with interactive microcomputer programs. Canadian Technical Report of Fisheries and Aquatic Sciences, no. 1140, 116 pp.Google Scholar
Seed, R. & Brown, R.A., 1978. Growth as a strategy for survival in two marine bivalves, Cerastoderma edule and Modiolus modiolus. Journal of Animal Ecology, 47, 283292.CrossRefGoogle Scholar
Smith, A.B., 1980. Stereom microstructure of the echinoid test. Special Papers in Palaeontology, 25, 181.Google Scholar
Taylor, A.M., 1958. Studies on the Biology of the Offshore Species of Manx Ophiuroidea. MSc Thesis, University of Liverpool.Google Scholar
Tunberg, B., 1982. Quantitative distribution of the macrofauna in a shallow, sandy bottom in Raunefjorden, western Norway. Sarsia, 67, 201210.CrossRefGoogle Scholar
Ursin, E., 1960. A quantitative investigation of the echinoderm fauna of the central North Sea. Meddelelser fra Danmarks Fiskeriog Havundersøgelser, 2, (24), 204 pp.Google Scholar
Warner, G.F., 1971. On the ecology of a dense bed of the brittle-star Ophiothrix fragilis. Journal of the Marine Biological Association of the United Kingdom, 51, 267282.CrossRefGoogle Scholar
Warner, G.F. & Woodley, J.D., 1975. Suspension-feeding in the brittle-star Ophiothrix fragilis. Journal of the Marine Biological Association of the United Kingdom, 55, 199210.CrossRefGoogle Scholar
Wilkie, I.C., 1978. Arm autotomy in brittlestars (Echinodermata: Ophiuroidea). Journal of Zoology, 186, 311330.CrossRefGoogle Scholar
Wilkie, I.C. & Emson, R.H., 1987. The tendons of Ophiocomina nigra and their role in autotomy (Echinodermata, Ophiuroida). Zoomorphology, 107, 3344.CrossRefGoogle Scholar
Wintzell, J., 1918. Bidrag till de Skandinaviska Ophiuridernas Biologi och Fysiologi. Uppsala: Appelbergs Boktryckeri Aktiebolag (not seen by author).Google Scholar