Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T19:17:46.274Z Has data issue: false hasContentIssue false

Size in relation to salinity in fossil and recent euryhaline ostracods

Published online by Cambridge University Press:  11 May 2009

Dennis Barker
Affiliation:
Department of Geology, University of Leicester

Extract

Variation in size of fossil euryhaline ostracods is discussed and compared to size variation in recent forms. The most likely cause of variation in size of euryhaline ostracods is variation in salinity. Similarities are indicated between Fabanella and Cyprideis species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, W. B., Southgate, B. A. & Bassindale, R., 1932. The salinity of the water retained in the muddy foreshore of an estuary. J. mar. biol. Ass. U.K., Vol. 18, pp. 297298.CrossRefGoogle Scholar
Anderson, F. W., 1958. Geology of the country around Bridport and Yeovil. Mem. geol. Surv. U.K.Google Scholar
Elofson, O., 1941. Zur Kenntnis der marinen Ostracoden Schwedens mit besonderer Berüksichtigung des Skageraks. Zool. Bidr. Uppsala, Bd. 19, pp. 215534, 52 figs., 42 maps.Google Scholar
Fischer-Piette, E., 1931. Sur la pénétration des diverses espèces marines sessiles dans les estuaries et sa limitation par l'eau douce. Ann. Inst. océanogr. Monaco, T. 10, pp. 213–43.Google Scholar
Fischer-Piette, E., 1933. Nouvelles observations sur l'ordre d'euryhalinité des espèces litorales. Bull. Inst. océanogr. Monaco, No. 619, pp. 116.Google Scholar
Harding, J. P., 1949. The use of probability paper for the graphical analysis of poly-modal frequency distributions. J. mar. biol. Ass. U.K., Vol. 28, pp 141–53.CrossRefGoogle Scholar
Kruit, C. & Andel Van Tj., H., 1955. Sediments of the Rhone Delta. Verh. Nederl. geol.-mijn. Genootsch., Geol., Vol. 15, pp. 357556, pls. 1–6.Google Scholar
Milne, A., 1938. The Ecology of the Tamar Estuary. III. Salinity and temperature conditions in the lower estuary. J. mar. biol. Ass. U.K., Vol. 22, pp. 529–42, figs. 1–5.CrossRefGoogle Scholar
Percival, E., 1929. A report on the fauna of the estuaries of the Tamar and Lynher. J. mar. biol. Ass. U.K., Vol. 16, pp. 81108.CrossRefGoogle Scholar
Reid, D. M., 1930. Salinity interchange between salt-water in sand and the over-flowing fresh-water, at low tide. I. J. mar. biol. Ass. U.K., Vol. 16, pp. 609–14.CrossRefGoogle Scholar
Reid, D. M., 1932. Salinity interchange between salt-water in sand and overflowing freshwater at low tide. II. J. mar. biol. Ass. U.K., Vol. 18, pp. 299306.CrossRefGoogle Scholar
Skogsberg, T., 1920. Studies on marine ostracods. Part I. Cypridinids, halocyprids, polycopids. Zool. Bidr. Uppsala, Suppl. Bd. 1, 784 pp., 153 figs.Google Scholar
Spooner, G. M. & Moore, H. B., 1940. The ecology of the Tamar Estuary. VI. An account of the macrofauna of the intertidal muds. J. mar. biol. Ass. U.K. Vol. 24, pp. 283330.CrossRefGoogle Scholar