Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T03:26:00.379Z Has data issue: false hasContentIssue false

Shell variability in Tawera gayi (Veneridae) from southern South America: a morphometric approach based on contour analysis

Published online by Cambridge University Press:  02 June 2010

Sandra Gordillo*
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET), Córdoba, Argentina. Centro de Investigaciones Paleobiológicas, Universidad Nacional de Córdoba (CIPAL, UNC), Avenida Vélez Sársfield 299, X5000JJC Córdoba, Argentina
Federico Márquez
Affiliation:
Biología y Manejo de Recursos Acuáticos (CENPAT, CONICET), Blvd Brown 2915, Puerto Madryn (U9120ACF), Chubut, Argentina, Universidad Nacional de la Patagonia San Juan Bosco, Blvd Brown 3100, Puerto Madryn (U9120ACF), Chubut, Argentina
Javiera Cárdenas
Affiliation:
Fundación Centro de Estudios del Cuaternario (CEQUA), Punta Arenas, Chile, Centro de Ciencias Ambientales EULA, Universidad de Concepción, Casilla 160-C, Barrio Universitario s/n, Concepción, Chile
Miguel Ángel Zubimendi
Affiliation:
Becario CONICET, Departamento de Arqueología, Museo de La Plata, FCNyM, UNLP and Universidad Nacional de la Patagonia Austral–Unidad Académica Caleta Olivia
*
Correspondence should be addressed to: S. Gordillo, Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET), Córdoba, Argentina email: [email protected] or [email protected]

Abstract

This study analyses the significance of shell morphological variations in the venerid clam Tawera gayi, a typical element of shallow marine soft bottoms in southern South America and the most common species recovered from Late Quaternary marine deposits along the Beagle Channel, Tierra del Fuego. Fossil and modern Tawera shells from different localities around the southern tip of South America were analysed using the Elliptic Fourier Analysis (EFA) method. Taking into account the palaeontological history of this genus in the southern hemisphere, EFA was also performed on shells of Tawera congeners from South Africa (T. philomela) and New Zealand (T. spissa). The use of EFA permitted the distinction between the three Tawera species and geographical differentiation in the T. gayi groups. These morphological variations of T. gayi appear best related to ecophenotypic plasticity as a response to different environmental conditions, although the palaeobiogeographical history of Tawera in South America cannot be ruled out.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adami, M. and Gordillo, S. (1999) Structure and dynamics of the biota associated with Macrocystis pyrifera (Phaeophyta) from the Beagle Channel, Tierra del Fuego. Scientia Marina 69, Supplement 2, 183191.Google Scholar
Boltovskoy, E. (1979) Paleoceanografía del Atlántico Sudoccidental desde el Mioceno, según estudios foraminiferológicos. Ameghiniana 16, 357389.Google Scholar
Cárdenas, J., Aldea, C. and Valdovinos, C. (2008) Chilean marine mollusca of northern Patagonia collected during the CIMAR-10 fjords cruise. Gayana 72, 3167.Google Scholar
Colizza, E. (1991) Preliminary report on coastal morphology and sea-bottom sediments of the Canales Beagle, Ballenero, Brecknock, Cockburn, and Magdalena. Bolletino di Oceanologia Teorica ed Applicata 9, 273279.Google Scholar
Costa, C., Aguzzi, J., Menesatti, P., Antonucci, F., Rimatori, V. and Mattoccia, M. (2008a) Shape analysis of different populations of clams in relation to their geographical structure. Journal of Zoology 276, 7180.Google Scholar
Costa, C., Menesatti, P., Aguzzi, J., D'andrea, S., Antonucci, F., Rimatori, V., Pallottino, P. and Mattoccia, M. (2008b) External shape differences between sympatric populations of commercial clams Tapes decussatus and T. philippinarum. Food and Bioprocess Technology. doi: 10.1007/s11947-008-0068-8.Google Scholar
Crampton, J.S. (1995) Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179186.CrossRefGoogle Scholar
Crampton, J.S. and Gale, A.S. (2005) A plastic boomerang: speciation and intraspecific evolution in the Cretaceous bivalve Actinoceramus. Paleobiology 31, 559577.Google Scholar
Crampton, J.S. and Maxwell, P.A. (2000) Size: all it's shaped up to be? Evolution of shape through the lifespan of the Cenozoic bivalve Spissatella (Crassatellidae). In Harper, E.M., Taylor, J.D. and Crame, J.A. (eds) Evolutionary biology of the Bivalvia. Geological Society of London Special Publication 177, 399423.Google Scholar
Dell, R.K. (1964) Antarctic and Subantarctic mollusca: Amphineura, Scaphopoda and Bivalvia. Discovery Reports 33, 1250.Google Scholar
Dell, R.K. (1971) The marine Mollusca of the Royal Society Expedition to southern Chile, 1958–1959. Records of the Dominion Museum 7, 155233.Google Scholar
Escribano, R., Fernández, M. and Aranís, A. (2003) Physical–chemical processes and patterns of diversity of the Chilean eastern boundary pelagic and benthic marine ecosystems: an overview. Gayana 67, 190205.Google Scholar
Ferson, S., Rohlf, F.J. and Koehn, R.K. (1985) Measuring shape variation of two dimensional outlines. Systematic Zoology 34, 5968.Google Scholar
Feruglio, E. (1950) Descripción Geológica de La Patagonia. Volume 3. Buenos Aires: Dirección General de Y.P.F., pp. 1431.Google Scholar
Freeman, H. (1974) Computer processing of line drawing image. Surveys 6, 5797.CrossRefGoogle Scholar
Gordillo, S. (1994) Perforaciones en bivalvos subfósiles y actuales del Canal Beagle, Tierra del Fuego. Ameghiniana 31, 177185.Google Scholar
Gordillo, S. (1998) Distribución biogeográfica de los moluscos holocenos del litoral argentino–uruguayo. Ameghiniana 35, 163180.Google Scholar
Gordillo, S. (1999) Holocene molluscan assemblages in the Magellan Region. Scientia Marina 63, Suppl. 1, 1522.Google Scholar
Gordillo, S. (2006) The presence of Tawera gayi (Hupé in Gay, 1854) (Veneridae, Bivalvia) in southern South America: did Tawera achieve a Late Cenozoic circumpolar traverse? Palaeogeography, Palaeoclimatology, Palaeoecology 240, 587601.Google Scholar
Gordillo, S., Coronato, A.M.J. and Rabassa, J.O. (2005) Quaternary molluscan faunas from the island of Tierra del Fuego after the Last Glacial Maximum. Scientia Marina 69, Supplement 2, 337348.Google Scholar
Guzmán, N., Marquardt, C., Ortlieb, L. and Frassinetti, D. (2000) La malacofauna Neogena y Cuaternaria del área de Caldera (27–28°S): especies y rangos bioestratigráficos. IX Congreso Geológico Chileno, Puerto Varas, Chile, Volume 1, pp. 476481.Google Scholar
Herm, H. (1969) Marines Pliozän and Pleistozän in Nord- und Mittel-Chile unter besonderer Berücksichtigung der Entwicklung der Mollusken-Faunen. Zitteliana 2, 1159.Google Scholar
Innes, D.J. and Bates, J.A. (1999) Morphological variation of Mytilus edulis and Mytilus trossulus in eastern Newfoundland. Marine Biology 133, 691699.Google Scholar
Iwata, H. and Ukai, Y. (2002) SHAPE: a computer program package for quantitative valuation of biological shapes based on elliptical Fourier descriptors. Journal of Heredity 93, 384385.Google Scholar
Kilian, R., Baeza, O., Steinke, T., Arevalo, M., Ríos, C. and Schneider, C. (2007) Late Pleistocene to Holocene marine transgression and thermohaline control on sediment transport in the western Magellanes fjord system of Chile (53°S). Quaternary International 161, 90107.CrossRefGoogle Scholar
Krapivka, S., Toro, J.E., Alcapán, A.C., Astorga, M., Presa, P., Pérez, M. and Guiñez, R. (2007) Shell-shape variation along the latitudinal range of the Chilean blue mussel Mytilus chilensis (Hupé, 1854). Aquaculture Research 38, 17701777.CrossRefGoogle Scholar
Kuhl, F.P. and Giardina, C.R. (1982) Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18, 236258.CrossRefGoogle Scholar
Lestrel, P.E. (1997) Fourier descriptors and their applications in biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lomovasky, B.J., Brey, T. and Morriconi, E. (2003) Population dynamics of the venerid bivalve Tawera gayi (Hupé, 1854) in the Ushuaia Bay, Beagle Channel. Journal of Applied Ichthyology 21, 6469.Google Scholar
Márquez, F., Robledo, J., Escati Peñaloza, G. and van der Molan, S. (2009) Use of different geometric morphometrics tools for the discrimination of phenotypic stocks of the striped clam Ameghinomya antiqua (Veneridae) in San José Gulf, Patagonia, Argentina. Fisheries Research. doi:10.1016/j.fishres.2009.09.018.Google Scholar
McCulloch, R.D., Clapperton, C.M., Rabassa, J. and Currant, A.P. (1997) The natural setting: the glacial and post-glacial environmental history of Fuego-Patagonia. In McEwan, C., Borrero, L.A. and Prieto, A. (eds.) Patagonia: natural history, prehistory and ethnography at the uttermost end of the Earth. London: British Museum Press, pp. 1231.Google Scholar
Osorio, C., Peña, R., Ramajo, L. and Garcelon, N. (2006) Malacofauna bentónica de los canales oceánicos del sur de Chile (43°–45°S). Ciencia y Tecnología Marina 29, 103114.Google Scholar
Palmer, M., Pons, G.-X. and Linde, M. (2004) Discriminating between geographical groups of a Mediterranean commercial clam (Chamelea gallina (L.): Veneridae) by shape analysis. Fisheries Research 67, 9398.Google Scholar
Pether, J. (1993) Relict shells of subantarctic mollusca from the Orange Shelf, Benguela Region, off southwestern Africa. The Veliger 36, 276284.Google Scholar
Pickard, G.L. (1973) Water structure in Chilean fjords. In Fraser, R. (ed.) Oceanography of the South Pacific. Wellington, New Zealand: 1972 New Zealand National Commission; UNESCO, Wellington, pp. 95104.Google Scholar
Pinochet, P. and Salinas, S. (1996) Estructura térmica y salina de fiordos y canales adyacentes a Campos de Hielo Sur. Revista Ciencia y Tecnología del Mar 19, 93122.Google Scholar
Reid, D. and Osorio, C. (2000) The shallow-water marine mollusca of the Estero Elefantes and Laguna San Rafael, southern Chile. Bulletin of the Natural History Museum of London, Zoology 66, 109146.Google Scholar
Ríos, C. and Mutschke, E. (1999) Community structure of intertidal boulder-cobble fields in the Strait of Magellan, Chile. Scientia Marina 63, Supplement 1, 193201.CrossRefGoogle Scholar
Rohlf, F.J. and Archie, J.W. (1984) A comparison of Fourier methods for description of wing shape in mosquitos (Diptera: Culicidae). Systematic Zoology 33, 302317.CrossRefGoogle Scholar
Rufino, M.M., Gaspar, M.B., Pereira, A.M. and Vasconcelos, P. (2006) Use of shape to distinguish Chamelea gallina and Chamelea striatula (Bivalvia: Veneridae): linear and geometric morphometric methods. Journal of Morphology 267, 14331440.CrossRefGoogle ScholarPubMed
Schuldt, M. (1975) Consideraciones sobre la reproducción de los pelecípodos chiónidos en la Cholguera de Punta Loma, Golfo Nuevo, Chubut. Physis 88, 137146.Google Scholar
Stanley, S.M. (1970) Relation of shell form to life habits of the Bivalvia (Mollusca). The Geological Society of America, Inc. Memoir no. 125, pp. 1296.Google Scholar
Urban, H.J. and Tesch, C. (1996) Aspects of the population dynamics of six bivalve species from southern Chile. Archive of Fishery and Marine Research 44, 243256.Google Scholar
Verdinelli, M.A. and Schuldt, M. (1976) Consideraciones preliminares sobre aspectos de la dinámica poblacional y reproducción de la almeja rayada Ameghinomya antiqua (King, 1831) (Chionidae) en Punta Loma, Golfo Nuevo-Chubut. Revista del Museo de La Plata 12, 183202.Google Scholar