Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T18:30:39.728Z Has data issue: false hasContentIssue false

Seasonal variations in the effect of temperature on the respiration of certain intertidal algae

Published online by Cambridge University Press:  11 May 2009

R. C. Newell
Affiliation:
Department of Zoology, Queen Mary College, University of London
V. I. Pye
Affiliation:
Department of Zoology, Queen Mary College, University of London

Extract

The intertidal algae Enteromorpha, Ulva, Fucus, Porphyra, Chondrus and Griffithsia are subjected to wide semi-diurnal fluctuations in temperature during the summer months. Measurements of the rate of respiration of such algae in the dark at a wide variety of temperatures have shown that during the summer the curve relating respiration to temperature (R. T curve) has a relatively shallow slope of Q10 < 1·2 between 10° and 20 °C. Algae collected during the autumn and winter show R. T curves which have a shallow slope in regions approximating to the temperature of the shore at the time of collection. Thus the respiration of such intertidal algae is relatively unaffected by temperature fluctuation within the normal environmental range. Further, the form of the R. T curve is not a fixed phenomenon which is characteristic of a particular species of alga, but appears to be modifiable in such a way that the shallow region of the R. T curve is appropriate to the temperatures prevailing in the habitat. In this way the effects of temperature fluctuation upon respiration are minimized.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biebl, R., 1939 a. Über Temperaturresistenz von Meeresalgen verschiedener Klimazonen und verschieden tiefer Standorte. Jb. wiss. Bot., Bd. 88, pp. 389420.Google Scholar
Biebl, R., 1939 b. Protoplasmatische Ökologie der Meeresalgen. Ber. dt. bot. Ges., Bd. 57, pp. 7990.Google Scholar
Chapman, V. J., 1962. The Algae. 472 pp. London: Macmillan.Google ScholarPubMed
Halcrow, K. & Boyd, C. M. 1967. The oxygen consumption and swimming activity of the amphipod Gammarus oceanicus at different temperatures. Comp. Biochem. Physiol., Vol. 23 pp. 233–42.CrossRefGoogle ScholarPubMed
Isaac, W. E., 1933. Some observations and experiments on the drought resistance of Pelvetia canaliculata. Ann. Bot., Vol. 47, pp. 343–8.CrossRefGoogle Scholar
Isaac, W. E., 1935. Preliminary study of the water loss of Laminaria digitata during intertidal exposure. Ann. Bot., Vol. 49, pp. 109–17.CrossRefGoogle Scholar
Isaac, W. E., 1937. The distribution, ecology and taxonomy of Porphyra on South African coasts. Proc. Linn. Soc., Lond., Vol. 168, pp. 61–5.CrossRefGoogle Scholar
Montfort, C., Ried, A. & Ried, I., 1955. Die Wirkung kurzfristiger warmer Bäder auf Atmung und Photosynthese im Vergleich von eurythermen und kaltstenothermen Meeresalgen. Beitr. Biol. Pfl., Bd. 31, pp. 349–75.Google Scholar
Montfort, C., Ried, A. & Ried, I., 1957. Abstufungen der funktionellen Wärmeresistenz bei Meeresalgen in ihren Beziehungen zur Umwelt und Erbgut. Biol. ZBl., Bd. 76, pp. 257289.Google Scholar
Newell, R. C., 1966. The effect of temperature on the metabolism of poikilotherms. Nature, Lond., Vol. 212 (No. 5060), pp. 427–8.CrossRefGoogle Scholar
Newell, R. C., 1967. Oxidative activity of poikilotherm mitochondria as a function of temperature. J. Zool. Lond., vol. 151, pp. 299311.CrossRefGoogle Scholar
Newell, R. C. & Northcroft, H. R., 1965. The relationship between cirral activity and oxygen uptake in Balanus balanoides. J. mar. biol. Ass. U.K., Vol. 45, pp. 387403.CrossRefGoogle Scholar
Newell, R. C. & Northcroft, H. R., 1967. A re-interpretation of the effect of temperature on the metabolism of certain marine invertebrates. J. Zool. Lond., Vol. 151, pp. 277–98.CrossRefGoogle Scholar
Shaw, T. I., 1960. The mechanism of iodide accumulation by the brown sea weed Laminaria digitata. II. Respiration and iodide uptake. Proc. R. Soc. B, Vol. 152, pp. 109–17.Google ScholarPubMed