Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T17:42:26.290Z Has data issue: false hasContentIssue false

Seasonal change in macromolecular support of reproduction of the tropical scallop Nodipecten nodosus: evidence from lipid content and fatty acid profiles of four tissues

Published online by Cambridge University Press:  10 April 2013

Luis Freites*
Affiliation:
Instituto Oceanográfico de Venezuela, Universidad de Oriente, Avenida Universidad, Cerro Colorado, Cumaná 6101, Venezuela, A. Postal 245
Natividad García
Affiliation:
Centro de Investigaciones Ecológicas Guayacán, Vicerrectorado Académico, Universidad de Oriente, Cumaná 6101, Venezuela
César Lodeiros
Affiliation:
Instituto Oceanográfico de Venezuela, Universidad de Oriente, Avenida Universidad, Cerro Colorado, Cumaná 6101, Venezuela, A. Postal 245
Alfonso N. Maeda-Martínez
Affiliation:
Centro de Investigaciones Biológicas de Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz 23090, B.C.S., México
Luis Troccoli
Affiliation:
Instituto de Investigaciones Científicas, Núcleo de Nueva Esparta, Universidad de Oriente, Venezuela
Aleikar Vásquez
Affiliation:
Instituto Oceanográfico de Venezuela, Universidad de Oriente, Avenida Universidad, Cerro Colorado, Cumaná 6101, Venezuela, A. Postal 245
Helga Guderley
Affiliation:
Département de Biologie, Université Laval, Québec, P.Q.CanadaG1K 7P4
*
Correspondence should be addressed to: L. Freites, Instituto Oceanográfico de Venezuela, Universidad de Oriente, Avenida Universidad, Cerro Colorado, Cumaná 6101, Venezuela, A. Postal 245. email: [email protected]

Abstract

Changes in total lipids and fatty acid profiles (FAPs) of gonad, digestive gland, mantle and muscle of the tropical scallop Nodipecten nodosus were examined during coastal upwelling and upwelling relaxation periods. Total lipids were most abundant in digestive gland, and intermediate in female gonad. Multidimensional scaling analysis of similarities (MDS-ANOSIM) and similarity percentage analyses (SIMPER) revealed significant changes of FAPs of the four tissues during the upwelling and upwelling relaxation periods. During both periods, SIMPER analysis revealed an internal similarity index greater than 90% for FAP of each tissue. However, during upwelling the gonad-FAP showed a lower dissimilarity index with the digestive gland-FAP (10), than with muscle-FAP (11) or mantle-FAP (13). In general, during upwelling, the fatty acids 16:0, 18:0, 16:1 n-7, 20:5n-3, 22:6n-3 and total PUFAn-3 explained 42 to 63% of variance between tissues; during upwelling relaxation, these fatty acids together with 14:0 and 18:1 n-7, explained 46 to 64% of variance. During upwelling period, MDS-ANOSIM showed a close association between FAP of digestive gland and gonad, suggesting a rapid transfer of fatty acids between these tissues, and consequently, that N. nodosus follows an opportunistic strategy during this period. In contrast, during upwelling relaxation, the slow and continuous fall in total lipid contents of digestive gland (September to November) and the progressive reduction of MDS distances between FAPs of digestive gland and gonad (August until November), suggest a gradual transfer of lipids from digestive gland to gonad to support the gonad development observed during this period. This suggests that N. nodosus switches to a conservative strategy during the upwelling relaxation period.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abad, M., Ruiz, C., Martínez, D., Mosquera, G. and Sanchez, J.L. (1995) Seasonal variations of lipid classes and fatty acids in flat oyster Ostrea edulis, from San Cibran (Galicia, Spain). Comparative Biochemistry and Physiology 110C, 109118.Google Scholar
Arellano-Martínez, M., Racotta, I.S., Ceballos-Vázquez, B.P., Elorduy-Garay, J.F. (2004) Biochemical composition, reproductive activity, and food availability of the lion's paw scallop Nodipecten subnodosus in the laguna Ojo de Liebre. Baja California Sur, México. Journal of Shellfish Research 23, 1523.Google Scholar
Barber, B.J. and Blake, N.J. (1985) Intra-organ biochemical transformations associated with oogenesis in the bay scallop, Argopecten irradians concentricus (SAY), as indicated by 14C incorporation. Biological Bulletin. Marine Biological Laboratory, Woods Hole 168, 3949.CrossRefGoogle Scholar
Bayne, B.L. (1976) Aspects of reproduction in bivalve mollusks. In Wiley, M. (ed.) Estuarine processes. Uses, stresses and adaptation to the estuary. Vol. 1. New York: Academic Press, pp. 432448.Google Scholar
Beninger, P.G. and Le Pennec, M. (1991) Functional anatomy of scallops. In Shunway, S.E. (ed.) Scallops: biology, ecology and aquaculture. Amsterdam: Elsevier, pp. 177191.Google Scholar
Beninger, P.G., Le Pennec, G.L. and Le Pennec, M. (2003) Demonstration of nutrient pathway from the digestive system to oocytes in the gonad intestinal loop of the scallop Pecten maximus. Biological Bulletin. Marine Biological Laboratory, Woods Hole 205, 8392.CrossRefGoogle ScholarPubMed
Besnard, J.Y., Lubet, P. and Nouvelot, A. (1989) Seasonal variations of the fatty acid content of the neutral lipids and phospholipids in the female gonad of Pecten maximus. Comparative Biochemistry and Physiology 93B, 2126.Google Scholar
Birkely, S.R., Grahl-Nielsen, O. and Gulliksen, B. (2003) Temporal variations and anatomical distributions of fatty acids in the bivalve Mya truncata, L. 1758, from Isfjorden, Spitsbergen. Polar Biology 26, 8392.CrossRefGoogle Scholar
Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry 37, 911915.Google ScholarPubMed
Caers, M., Coutteau, M., Cure, K., Morales, V., Fajardo, G. and Sorgeloos, P. (1999a) The Chilean scallop Argopecten purpuratus (Lamarck, 1819) I. Fatty acid composition and lipid content of six organs. Comparative Biochemistry and Physiology 123B, 8996.CrossRefGoogle Scholar
Caers, M., Coutteau, P., Cure, K., Morales, V., Gajardo, G. and Sorgeloos, P. (1999b) The Chilean scallop Argopecten purpuratus (Lamarck, 1819): Il. Manipulation of the fatty acid composition and lipid content of the eggs via lipid supplementation of the broodstock diet. Comparative Biochemistry and Physiology 123B, 97103.CrossRefGoogle Scholar
Caers, M., Coutteau, P., Sorgeloos, P. and Gajardo, G. (2003) Impact of algal diets and emulsions on the fatty acid composition and content of selected tissues of adult broodstock of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture 217, 437452.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory, 144 pp.Google Scholar
Cushing, D.H. (1975) Marine ecology and fisheries. Cambridge: Cambridge University Press, 276 pp.Google Scholar
Dunstan, G.A., Volkman, J.K., Barret, S.M., Leroi, J.-M. and Jeffery, S.W. (1994) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35, 155161.CrossRefGoogle Scholar
Epp, J., Bricelj, V.M. and Malouf, R. E. (1988) Seasonal partitioning and utilization of energy reserves in two age classes of the bay scallop Argopecten irradians irradians (Lamarck). Journal of Experimental Marine Biology and Ecology 121, 113136.CrossRefGoogle Scholar
Estrada, M. and Blasco, D. (1979) Two phases of the phytoplankton community in the Baja California Upwelling. Limnology and Oceanography 24, 10651080.CrossRefGoogle Scholar
Fernández-Reiriz, M.J., Perez-Camacho, A., Ferreiro, M.J., Blanco, J., Planas, M., Campos, M.J. and Labarta, U. (1989) Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae. Aquaculture 83, 1737.CrossRefGoogle Scholar
Fernández-Reiriz, M.J., Labarta, U. and Babarro, J.M.F. (1996) Comparative allometries in growth and chemical composition of mussel (Mytilus galloprovincialis, Lmk.) cultured in two zones in the Ría Sada (Galicia, NW Spain). Journal of Shellfish Research 15, 349353.Google Scholar
Freites, L., García, N., Troccoli, L., Maeda-Martínez, A.N. and Fernández-Reiriz, M.J. (2010) Influence of environmental variables and reproductive strategies on gonad fatty acids profile of tropical scallop Nodipecten nodosus (L. 1758). Comparative Biochemistry and Physiology 157B: 408414.CrossRefGoogle Scholar
Gabbott, P.A. (1983) Developmental and seasonal metabolic activities in marine mollusca. In Wilbur, K.M. (ed.). The Mollusca. Vol. 2. Environmental biochemistry and physiology. New York: Academic Press, pp. 165219.Google Scholar
Galap, C., Leboulenger, F. and Grillot, J. (1997) Seasonal variation in biochemical constituents during the reproductive cycle of the female dog cockle Glycymeris glycymeris. Marine Biology 179, 625634.CrossRefGoogle Scholar
García, N., Lodeiros, C., Arrieche, D., Prieto, A., Freites, L. and Himmelman, J. (2007) Relación del tejido somático y los factores ambientales en el ciclo reproductivo de la vieira Nodipecten nodosus (L., 1758). Boletín del Centro de Investigaciones Biológicas, Universidad del Zulia 41, 292308.Google Scholar
Kruskal, J. and Wish, M. (1978) Multidimensional scaling. Sage university paper series on quantitative applications in the social sciences. Number 11. Newbury Park, CA: Sage Publications, 93 pp.Google Scholar
Le Pennec, G., Le Pennec, M. and Beninger, G. (2001) Seasonal digestive gland dynamics of the scallop Pecten maximus in the Bay of Brest (France). Journal of the Marine Biological Association of the United Kingdom 81, 663671.CrossRefGoogle Scholar
Lodeiros, C., Marín, B. and Prieto, A. (1999) Catálogo de moluscos marinos de las costas nororientales de Venezuela: Clase Bivalvia. Cumana, Venezuela: Ediciones Apudons, 109 pp.Google Scholar
Lodeiros, C. and Himmelman, J.H. (2000) Identification of environmental factors affecting growth and survival of the tropical scallop Euvola (Pecten) ziczac in suspended culture in the Golfo de Cariaco, Venezuela. Aquaculture 182, 91114.CrossRefGoogle Scholar
Lodeiros, C.J., Rengel, J.J., Guderley, H.E. and Nusetti, O. (2001) Biochemical composition and energy allocation in the tropical scallop Lyropecten (Nodipecten) nodosus during the months leading up to and following the development of gonads. Aquaculture 199, 6372.CrossRefGoogle Scholar
Maeda-Martínez, A.N., Lombeida, P., Freites, L., Lodeiros, C. and Sicard, M.T. (2001) Cultivo de pectínidos en fondo y en estanques. In Maeda-Martínez, A.N. (ed.) Los moluscos Pectínidos de Iberoamérica: Ciencia y Acuicultura. Mexico: Limusa, pp. 193211.Google Scholar
Mandelli, E. and Ferráz-Reyes, E. (1982) Primary production and phytoplankton dynamics in a tropical inlet, Gulf of Cariaco, Venezuela. International Gesamten Review of Hydrobiology 57, 8595.Google Scholar
McLafferty, F.W. and Turecek, F. (1993) Interpretation of mass spectra. 4th edition. Sausalito, CA: University Sciences Books, 371 pp.Google Scholar
Miloslavich, P. and Klein, E. (2008) Ecorregiones marinas del Caribe venezolano. In Klein, E. (ed.) Prioridades de PDVSA en la conservación de la biodiversidad en el Caribe venezolano. Caracas, Venezuela: Petróleos de Venezuela S.A., Universidad Simón Bolívar, The Nature Conservancy, pp. 1619.Google Scholar
Muller-Karger, F., Varela, R., Thunell, R., Astor, Y., Zhang, H., Luerssen, R. and Hu, C. (2004) Processes of coastal upwelling and carbon flux in the Cariaco Basin. Deep-Sea Research II 5, 927943.CrossRefGoogle Scholar
Napolitano, G.E., Pollero, R.J., Ganoso, A.M., Macdonald, B.A. and Thompson, R.J. (1997) Fatty acids as trophy markers of phytoplankton blooms in the Bahía Blanca estuary (Buenos Aires, Argentina) and in Trinity Bay (Newfoundland, Canada). Biochemical Systematics and Ecology 25, 739755.CrossRefGoogle Scholar
Navarro, E., Iglesias, J.I.P. and Larrañaga, A. (1989) Interannual variation in the reproductive cycle and biochemical composition of the cockle Cerastoderma edule from Mundaca Estuary (Biscay, North Spain). Marine Biology 101, 503511.CrossRefGoogle Scholar
Palacios, E., Racotta, I.S., Kraffe, E., Marty, Y., Moal, J. and Samainc, J.F. (2005) Lipid composition of the giant lion's-paw scallop (Nodipecten subnodosus) in relation to gametogenesis. I. Fatty acids. Aquaculture 250, 270282.CrossRefGoogle Scholar
Pazos, A.J., Ruiz, C., Garcia-Martin, O., Abad, M. and Sanchez, J.L. (1996) Seasonal variations of the lipid content and fatty acid composition of Crassostrea gigas cultured in El Grove, Galicia, N.W. Spain. Comparative Biochemistry and Physiology 114B, 171179.CrossRefGoogle Scholar
Pazos, A.J., Román, G., Acosta, C.P., Abad, M. and Sánchez, J.L. (1997) Seasonal changes in condition and biochemical composition of the scallop Pecten maximus L. from suspended culture in the Ria de Arousa (Galicia, N.W. Spain) in relation to environmental conditions. Journal of Experimental Marine Biology and Ecology 211, 169193.CrossRefGoogle Scholar
Pirela-Ochoa, E., Troccoli, L. and Hernández-Ávila, I. (2008) Hidrografía y cambios en la comunidad del microfitoplancton de la Bahía de Charagato, Isla de Cubagua, Venezuela. Boletín del Instituto Oceanográfico de Venezuela, Universidad de Oriente 47, 315.Google Scholar
Racotta, I.S., Ramirez, J.L., Ibarra, A.M., Rodríguez-Jaramillo, M.C., Carreño, D. and Palacios, E. (2003) Growth and gametogenesis in the lion-paw scallop Nodipecten (Lyropecten) subnodosus. Aquaculture 217, 335349.CrossRefGoogle Scholar
Riasco, J.M. (2005) Effects of El Niño-Southern oscillation on the population dynamics of the tropical bivalve Donax dentifer from Málaga bay, Colombian Pacific. Marine Biology 148, 12831293.CrossRefGoogle Scholar
Robinson, W.E., Wehling, W.E., Morse, M.P. and Macleod, G.C. (1981) Seasonal changes in soft body component indices and energy reserves in the Atlantic deep-sea scallop, Placopecten magellanicus. Fisheries Bulletin 79, 449458.Google Scholar
Rouser, G., Kritchevsky, G. and Yamamoto, A. (1967) Column chromatographic and associated procedures for separation and determination of phosphatides and glicolipids. In Marinetti, G. (ed.) Lipids chromatographic analysis. New York: Marcel Dekker, pp. 99163.Google Scholar
Sato, N. and Murata, N. (1988) Membrane lipids. Methods in Enzymology 167, 251259.CrossRefGoogle Scholar
Tilstone, G., Figueiras, F. and Fraga, F. (1994) Upwelling-downwelling sequences in the generation of tides in a coastal upwelling system. Marine Ecology Progress Series 122, 241253.CrossRefGoogle Scholar
Utting, S.O. and Millican, P.F. (1998) The role of diet in hatchery conditioning of Pecten maximus L.: a review. Aquaculture 165, 167178.CrossRefGoogle Scholar
Vassallo, M.T. (1973) Lipid storage and transfer in the scallop Chlamys hericia Gould. Comparative Biochemistry and Physiology 44A, 11691175.Google Scholar
Vélez, A., Sotillo, F. and Pérez, J. (1987) Variación estacional de la composición química de los pectínidos Euvola (Pecten) ziczac y Lyropecten nodosus. Boletín del Instituto Oceanográfico de Venezuela, Universidad de Oriente 26, 6772.Google Scholar
Veloza, A.J., Chu, F.E. and Tang, K.W. (2006) Trophy modification of essential fatty acids by heterotrophic protist and its effects on the fatty acid composition of the copepod Acartia tonsa. Marine Biology 148, 779788.CrossRefGoogle Scholar
Villalba, A. (1995) Gametogenic cycle of culture mussel, Mytilus galloprovincialis, in the bays of Galicia (N. W. Spain). Aquaculture 130, 269277.CrossRefGoogle Scholar
Zar, J. (1984) Biostatistical analysis. Upper Saddle River, NJ: Prentice Hall, 718 pp.Google Scholar