Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T04:30:23.388Z Has data issue: false hasContentIssue false

Sand transport paths around the British Isles resulting from M2 and M4tidal interactions

Published online by Cambridge University Press:  11 May 2009

R. D. Pingree
Affiliation:
Institute of Oceanographic Sciences, Wormley, Surrey
D. K. Griffiths
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth

Extract

A non-linear numerical model is used to derive both the maximum bottom stress and the mean stress on the shelf sea-bed around Britain, due to tidal streaming. It is shown that these two vector distributions will be important in sand transport studies. It is further expected that the results will be relevant to other benthic studies.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belderson, R. H., Kenyon, N. H. & Stride, A. H., 1977. Sand transport paths. [In Atlas of the Seas Around the British Isles by Lee, A. J. and Ramster., J. W.] Fisheries Research Technical Report, Lowestoft, no. 20, sheet 35.Google Scholar
Chabert, D'hieres G. & Le Provost, C., 1970. Détermination des caractéristiques des ondes harmoniques M4. M6 dans la Manche sur modéle réduit hydraulique. Compte rendu hebdomadaires des séances de l'Académie des sciences (A), 270, 17031706.Google Scholar
Davies, A. M., 1976. A numerical model of the North Sea and its use in choosing locations for the deployment of offshore tide gauges in the JONDSAP ‘76 Oceanographic Experiment. Deutsche hydrographische Zeitschrift, 29, 1124.CrossRefGoogle Scholar
Flather, R. A., 1976. A tidal model of the north-west European Continental Shelf. Mémoires de la Société royales des sciences de Liége, no. 9, 141164.Google Scholar
Hunter, J. R., 1975. A note on the quadratic friction in the presence of tides. Estuarine and Coastal Marine Science, 3, 473475.CrossRefGoogle Scholar
Hunter, J. R., 1979. On the interaction of M2 and M2n tidal velocities in relation to quadratic and higher power laws. Deutsche hydrographische Zeitschrift. (In the Press.)CrossRefGoogle Scholar
Maddock, L. & Pingree, R. D., 1978. Numerical simulation of the Portland tidal eddies. Estuarine and Coastal Marine Science, 6, 353363.Google Scholar
Maier-Reimer, E., 1977. Residual circulation in the North Sea due to the M2 tide and mean annual wind stress. Deutsche hydrographische Zeitschrift, 30, 6980.Google Scholar
Pingree, R. D., 1978. The formation of the Shambles and other banks by tidal stirring of the seas. Journal of the Marine Biological Association of the United Kingdom, 58, 211226.CrossRefGoogle Scholar
Pingree, R. D. & Griffiths, D. K., 1978. Tidal fronts on the shelf seas around the British Isles. Journal of Geophysical Research (Oceans and Atmospheres), 83, 46154622. Chapman Conference Special Issue.CrossRefGoogle Scholar
Pingree, R. D. & Maddock, L., 1977. Tidal eddies and coastal discharge. Journal of the Marine Biological Association of the United Kingdom, 57, 869875.CrossRefGoogle Scholar
Pingree, R. D. & Maddock, L., 1978. The M4, tide in the English Channel derived from a non-linear numerical model of the M2 tide. Deep-Sea Research, 26, 5368.CrossRefGoogle Scholar
Ronday, F. C., 1972. Modèle mathematique pour l'étude de la circulation du à la maree en Mer du Nord. Manuscript Report Series, Marine Sciences Branch, Ottawa, no. 29, 51 pp.Google Scholar
Stride, A. H., 1963. Current-swept sea floors near the southern half of Great Britain. Quarterly Journal of the Geological Society of London, 119, 175199.CrossRefGoogle Scholar
Stride, A. H., 1973. Sediment transport by the North Sea. In North Sea Science (ed. Goldberg, E. D.), pp. 101130. The M.I.T. Press.Google Scholar
Tee, K. T., 1976. Tide-induced residual current, a 2-D non-linear numerical tidal model. Journal of Marine Research, 34, 603628.Google Scholar