Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-05T11:00:24.359Z Has data issue: false hasContentIssue false

Reproductive and Nutritional Periodicities in Populations of the European Sea-Urchin, Echinus Esculentus (Echinodermata: Echinoidea) from the English Channel

Published online by Cambridge University Press:  11 May 2009

D. Nichols
Affiliation:
Department of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS
G. M. Bishop
Affiliation:
Department of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS
A. A. T. Sime
Affiliation:
Department of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS

Extract

The European sea-urchin, Echinus esculentus L., occurs from Finnmark in the north to the Canaries in the south. Around Britain, it is found from the Isle of Portland, English Channel, throughout most of the fully saline waters of the western and northern coasts, and in the North Sea as far south as Flamborough Head. Though it occurs between tide-marks in a few places, it is generally common from about 5 m depth below c.d. to about 100 m, though it is recorded from about 200 m depth (A. M. Clark, personal communication). It is a principal browser on the reefs on which it occurs, and feeds preferentially on kelp sporelings and other algae when it occurs in the photic zone, and on encrusting invertebrates and protochordates below the depth at which algae occur (De Ridder & Lawrence, 1982). E. esculentus is said to migrate inshore prior to spawning, and then retreat to deeper water in late spring (Elmhirst, 1922; Stott, 1931; personal observation), but a rigorous study of these apparent movements has yet to be undertaken. Echinoids fare better on a diet principally of algae than on one of animal material (Lawrence, 1975), so it might be assumed that the winter inshore migration could bring an urchin into a nutritionally richer area for the final developmental phase of gametogenesis.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bamford, D., 1982. Epithelial absorption. In Echinoderm Nutrition (ed. Jangoux, M. and Lawrence, J. M.), pp. 317330. Rotterdam: A. A. Balkema.Google Scholar
Calow, P., 1979. The cost of reproduction – a physiological approach. Biological Reviews, 54, 2340.CrossRefGoogle ScholarPubMed
Caullery, M., 1925. Sur la structure et le functionnement des gonades chez les echinides. Travaux de la Station zoologique de Wimereux, 9, 21—35.Google Scholar
Crapp, G. B. & Willis, M. E., 1975. Age determination in the sea urchin Paracentrotus lividus (Lamarck), with notes on the reproductive cycle. Journal of Experimental Marine Biology and Ecology, 20, 157178.CrossRefGoogle Scholar
Elmhirst, R., 1922. Habits of Echinus esculentus. Nature, London, 110, 667.CrossRefGoogle Scholar
Falk-Petersen, I. B. & Lönning, S., 1983. Reproductive cycles of two closely related sea urchin species, Strongylocentrotus droebachiensis (O. F. Müller) and Strongylocentrotus pallidus. Sarsia, 68, 157164.CrossRefGoogle Scholar
Farmanfarmaian, A., Giese, A. C., Boolootian, R. A. & Bennett, J., 1958. Annual reproductive cycles in four species of west coast starfishes. Journal of Experimental Zoology, 138, 355367.CrossRefGoogle Scholar
Fenaux, L., 1968. Maturation des gonades et cycles saisoniers des larves chez Arbacia lixula, Paracentrotus lividus et Psammechinus microtuberculatus. Vie et milieu, 19, 152.Google Scholar
Fenaux, L., 1981. Cycles saisoniers de reproduction et croissance larvaire chez les échinodermes. Oceanis, 6, 277307.Google Scholar
Ferguson, J. C., 1967. Utilization of dissolved exogenous nutrients by the starfishes, Asterias forbesi and Henricia sanguinolenta. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 132, 161173.CrossRefGoogle ScholarPubMed
Fuji, A., 1960 a. Studies on the biology of the sea urchin. I. Superficial and histological gonadal changes in gametogenic process of two sea urchins, Strongylocentrotus nudus and 5. intermedius. Bulletin of the Faculty of Fisheries, Hokkaido University, 11, 114.Google Scholar
Fuji, A., 1960 b. Studies on the biology of the sea urchin. III. Reproductive cycle of two sea urchins, Strongylocentrotus nudus and 5. intermedius in southern Hokkaido. Bulletin of the Faculty of Fisheries, Hokkaido University, 11, 4957.Google Scholar
Giese, A. C., 1966. On the biochemical constitution of some echinoderms. In Physiology of Echinodermata (ed. Boolootian, R. A.), pp. 757—796. New York: WileyInterscience.Google Scholar
Gonor, J. J., 1972. Gonad growth in the sea urchin, Strongylocentrotus purpuratus (Stimpson) (Echinodermata: Echinoidea) and the assumptions of gonad index method. Journal of Experimental Marine Biology and Ecology, 10, 89103.Google Scholar
Gonor, J. J., 1973. Reproductive cycles in Oregon populations of the echinoid, Strongylocentrotus purpuratus (Stimpson). I. Annual gonad growth and ovarian gametogenic cycles. Journal of Experimental Marine Biology and Ecology, 12, 45—64.CrossRefGoogle Scholar
Holland, N. D., 1967. Gametogenesis during the annual reproductive cycle in a cidaroid sea urchin (Stylocidaris affinis). Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 133, 578590.CrossRefGoogle Scholar
Holland, N. D., & Holland, L. Z., 1969. Annual cycles in germinal and non-germinal cell populations in the gonads of the sea urchin Psammechinus microtuberculatus. Pubblicazioni della Stazione zoologica di Napoli, 37, 394404.Google Scholar
Lawrence, J. M., 1975. On the relationship between marine plants and sea-urchins. Oceanography and Marine Biology, an Annual Review, 13, 213286.Google Scholar
Lawrence, J. M., Lawrence, A. L. & Giese, A. C., 1966. Role of the gut as a nutrient-storage organ in the purple sea urchin (Strongylocentrotus purpuratus). Physiological Zoology, 39 (4), 281290.CrossRefGoogle Scholar
Lawrence, J. M., Lawrence, A. L. & Holland, N. D., 1965. Annual cycle in the size of the gut of the purple sea urchin Strongylocentrotus purpuratus (Stimpson). Nature, London, 205, 12381239.CrossRefGoogle Scholar
Lewis, G. A. & Nichols, D., 1979. Colonisation of an artificial reef by the sea-urchin, Echinus esculentus. Progress in Underwater Science, 4, 189195.Google Scholar
Lewis, G. A. & Nichols, D., 1980. Geotactic movements following disturbance in the European sea urchin, Echinus esculentus (Echinodermata: Echinoidea). Progress in Underwater Science, 5, 171186.Google Scholar
Lewis, G. A. & Nichols, D., 1981. Preliminary experiments on the colonisation of artificial reefs and a cleared site by the European sea-urchin Echinus esculentus (Echinodermata: Echinoidea). Progress in Underwater Science, 6, 2935.Google Scholar
Lewis, J. B., 1958. The biology of the tropical sea-urchin Tripneustes esculentus Leske in Barbados, British West Indies. Canadian Journal of Research, 36, 607621.Google Scholar
Moore, H. B., 1934. A comparison of the biology of Echinus esculentus in different habitats. Part I. Journal of the Marine Biological Association of the United Kingdom, 19, 869885.CrossRefGoogle Scholar
Moore, H. B., 1935. Comparison of biology of Echinus esculentus in different habitats. Part II. Journal of the Marine Biological Association of the United Kingdom, 20, 109128.CrossRefGoogle Scholar
Moore, H. B., 1937. A comparison of the biology of Echinus esculentus in different habitats. Part III. Journal of the Marine Biological Association of the United Kingdom, 21, 711720.CrossRefGoogle Scholar
Nichols, D. & Barker, M. F., 1984 a. Reproductive and nutritional periodicities in the starfish, Marthasterias glacialis, from Plymouth Sound. Journal of the Marine Biological Association of the United Kingdom, 64, 461470.CrossRefGoogle Scholar
Nichols, D. & Barker, , 1984 b. A comparative study of reproductive and nutritional periodicities in two populations of Asterias rubens (Echinodermata: Asteroidea) from the English Channel. Journal of the Marine Biological Association of the United Kingdom, 64, 471484.CrossRefGoogle Scholar
Nichols, D., Bishop, G. M. & Sime, A. A. T., 1982 a. An annual reproductive and nutritional cycle of the European sea-urchin Echinus esculentus in the Plymouth area. In Proceedings of the International Echinoderms Conference, Tampa Bay, 1981 (ed. Lawrence, J. M.), pp. 451456. Rotterdam: A. A. Balkema.Google Scholar
Nichols, D., Bishop, G. M. & Sime, A. A. T., 1982 b. The effect of depth and exposure on gonad production in the sea-urchin Echinus esculentus (Echinodermata: Echinoidea) from sites around the British Isles. Progress in Underwater Science, 8, 6171.Google Scholar
Nichols, D., Sime, A. A. T. & Bishop, G. M., in the Press. Growth in populations of the European sea-urchin Echinus esculentus L. (Echinodermata: Echinoidea) from the English Channel and Firth of Clyde. Journal of Experimental Marine Biology and Ecology.Google Scholar
Pearse, J. S. & Pearse, V. B., 1973. Removal of glycine from solution by the sea-urchin Strongylocentrotus purpuratus. Marine Biology, 19 (4), 281—284.CrossRefGoogle Scholar
Régis, M.-B., 1979. Analyse des fluctuations des indices physiologiques chez deux échinides (Paracentrotus lividus (Lmk) et Arbacia lixula L.) du Golfe de Marseille. Téthys, 9 (2). 167181.Google Scholar
Ridder, C. de & Lawrence, J. M., 1982. Food and feeding mechanisms: Echinoidea. In Echinoderm Nutrition (ed. Jangoux, M. and Lawrence, J. M.), pp. 57115. Rotterdam: A. A. Balkema.Google Scholar
Stott, F. C., 1931. The spawning of Echinus esculentus and some changes in gonad composition. Journal of Experimental Biology, 8, 133—150.CrossRefGoogle Scholar
Stott, F. C., 1955. The food canal of the sea-urchin Echinus esculentus and its functions. Proceedings of the Zoological Society of London, 125, 6386.CrossRefGoogle Scholar