Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T09:46:17.608Z Has data issue: false hasContentIssue false

Regulation of gene expression in the sea urchin embryo

Published online by Cambridge University Press:  11 May 2009

James A. Coffman
Affiliation:
Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
Eric H. Davidson
Affiliation:
Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA

Extract

In the undisturbed sea urchin embryo, cleavage of the blastomeres is invariant and gives rise to five polyclonal territories that are each defined by the larval structures to which they give rise, and by unique programmes of gene expression. These territories are the aboral ectoderm, the oral ectoderm, the vegetal plate, the skeletogenic mesenchyme, and the small micromeres. Structural gene markers for four of these territories (all except the small micromeres, which participate in later development) have been cloned and characterized, and the regulatory domains of several of these genes have been mapped to the level of specific protein-binding sites.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeuerle, P.A. & Baltimore, D., 1988. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-KB transcription factor. Cell, 53, 211217.CrossRefGoogle Scholar
Benson, S., Sucov, H., Stephens, L., Davidson, E. & Wilt, F., 1987. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression. Developmental Biology, 120, 499506.CrossRefGoogle Scholar
Boveri, T., 1901. Die polarität von oocyte, ei, und larve des Strongylocentrotus lividus. Zoologische Jahrbucher, Anatomie und Ontogenie der Tiere. Jena, 14, 630653.Google Scholar
Calzone, F.J., Höög, C., Teplow, D.B., Cutting, A.E., Zeller, R.W., Britten, R.J. & Davidson, E.H., 1991. Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA binding protein. Development, 112, 335350.CrossRefGoogle ScholarPubMed
Calzone, F.J., Thézé, N., Thiebaud, P., Hill, R.L., Britten, R.J. & Davidson, E.H., 1988. Developmental appearance of factors that bind specifically to cis-regulatory sequences of a gene expressed in the sea urchin embryo. Genes and Development, 2, 10741088.CrossRefGoogle ScholarPubMed
Cameron, R.A. & Davidson, E.H., 1991. Cell type specification during sea urchin development. Trends in Genetics, 7, 212218.CrossRefGoogle ScholarPubMed
Cameron, R.A., Fraser, S.E., Britten, R.J. & Davidson, E.H., 1989. The oral-aboral axis of a sea urchin embryo is specified by first cleavage. Development, 106, 641647.CrossRefGoogle ScholarPubMed
Cameron, R.A., Hough-Evans, B.R., Britten, R.J. & Davidson, E.H., 1987. Lineage and fate of each blastomere of the eight-cell sea urchin embryo. Genes and Development, 1, 7584.CrossRefGoogle ScholarPubMed
Coffman, J.A. & Davidson, E.H., 1992. Expression of spatially regulated genes in the sea urchin embryo. Current Opinion in Genetics and Development, 2, 260268.CrossRefGoogle ScholarPubMed
Coffman, J.A., Moore, J.G., Calzone, F.J., Britten, R.J., Hood, L.E. & Davidson, E.H., 1992. Automated sequential affinity chromatography of sea urchin embryo DNA binding proteins. Molecular Marine Biology and Biotechnology, 1, 136146.Google ScholarPubMed
Cox, K.H., Angerer, L.M., Lee, J.J., Davidson, E.H. & Angerer, R.C., 1986. Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis. Journal of Molecular Biology, 188, 159172.CrossRefGoogle ScholarPubMed
Davidson, E.H., 1989. Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism. Development, 105, 421445.CrossRefGoogle ScholarPubMed
Davidson, E.H., 1991. Spatial mechanisms of gene regulation in metazoan embryos. Development, 113, 126.CrossRefGoogle ScholarPubMed
Franks, R.R., Anderson, R., Moore, J.G., Hough-Evans, B.R., Britten, R.J. & Davidson, E.H., 1990. Competitive titration in living sea urchin embryos of regulatory factors required for expression of the Cyllla actin gene. Development, 110, 3140.CrossRefGoogle Scholar
Harrington, M.G., Coffman, J.A., Calzone, F.J., Hood, L.E., Britten, R.J. & Davidson, E.H., 1992. Complexity of sea urchin embryo nuclear proteins that contain basic domains. Proceedings of the National Academy of Sciences of the United States of America, 89, 62526256.CrossRefGoogle ScholarPubMed
Hörstadius, S., 1973. Experimental embryology of echinoderms. Oxford: Clarendon Press.Google Scholar
Hough-Evans, B.R., Franks, R.R., Zeller, R.W., Britten, R.J. & Davidson, E.H., 1990. Negative spatial regulation of the lineage specific Cyllla actin gene in the sea urchin embryo. Development, 110, 4150.CrossRefGoogle Scholar
Lee, J.J., Calzone, F.J., Britten, R.J., Angerer, R.C. & Davidson, E.H., 1986. Activation of sea urchin actin genes during embryogenesis. Measurement of transcript accumulation from five different genes in Strongylocentrotus purpuratus. Journal of Molecular Biology, 188, 173183.CrossRefGoogle ScholarPubMed
Nocente-McGrath, C., Brenner, C.A. & Ernst, S.G., 1989. Endo 16, a lineage-specific protein of the sea urchin embryo, is first expressed just prior to gastrulation. Developmental Biology, 136, 264272.CrossRefGoogle Scholar
Ransick, A. & Davidson, E.H., 1993. A complete second gut induced by transplanted micromeres in the sea urchin embryo. Science, New York, 259, 11341138.CrossRefGoogle ScholarPubMed
Ransick, A., Ernst, S.G., Britten, R.J. & Davidson, E.H., 1993. Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos. Mechanisms of Development, 42, 117124.CrossRefGoogle ScholarPubMed
Rushlow, C.A., Han, K., Manley, J.L. & Levine, M., 1989. The graded distribution of the dorsal morphogen is initiated by selective nuclear transport in Drosophila. Cell, 59, 11651177.CrossRefGoogle ScholarPubMed
Steward, R., 1989. Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function. Cell, 59, 11791188.CrossRefGoogle Scholar
Sucov, H.M., Benson, S., Robinson, J.J., Britten, R.J., Wilt, F. & Davidson, E.H., 1987. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. II. Structure of the gene and derived sequence of the protein. Developmental Biology, 120, 507519.CrossRefGoogle Scholar
Sucov, H.M., Hough-Evans, B.R., Franks, R.R., Britten, R.J. & Davidson, E.H., 1988. A regulatory domain that directs lineage-specific expression of a skeletal matrix protein gene in the sea urchin embryo. Genes and Development, 2, 12381250.CrossRefGoogle ScholarPubMed
Thézé, N., Calzone, F.J., Thiebaud, P., Hill, R.L., Britten, R.J. & Davidson, E.H., 1990. Sequences of the Cyllla actin gene regulatory domain bound specifically by sea urchin embryo nuclear proteins. Molecular Reproduction and Development, 25, 110122.CrossRefGoogle Scholar
Thiebaud, P., Goodstein, M., Calzone, F.J., Thézé, N., Britten, R.J. & Davidson, E.H., 1990. Intersecting batteries of differentially expressed genes in the early sea urchin embryo. Genes and Development, 4, 19992010.CrossRefGoogle ScholarPubMed