Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T10:07:12.555Z Has data issue: false hasContentIssue false

Raman spectroscopic study of the vanadium and sulphate in blood cell homogenates of the ascidian, Ascidia gemmata

Published online by Cambridge University Press:  11 May 2009

K. Kanamori
Affiliation:
Department of Chemistry, Faculty of Science, Toyama University, Gofuku 3190, Toyama 930, Japan
H. Michibata
Affiliation:
Mukaishima Marine Biological Laboratory, Hiroshima University, Mukaishima-cho, Hiroshima 722, Japan

Abstract

The Raman spectrum of a cell homogenate obtained from the unfractioned blood cells of Ascidia gemmata was recorded in an effort to determine the ratio of the level of sulphate to that of vanadium in the blood cells. The ratio obtained was 1·47, which is close to 1·5, the value predicted if sulphate ions are present as the counter ions of V3+ ions. We found evidence that an aliphatic sulphonic acid is present in the blood cells, namely, the Raman spectrum of the cell homogenate included a band at 1044 cm−1, which corresponds to the symmetrical stretching vibration of the SO3 group of the anion of cysteic acid.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azumi, K., Yokosawa, H. & Ishii, S., 1990. Halocyamines: novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry, 29, 159165.CrossRefGoogle ScholarPubMed
Bayer, E., Schiefer, G., Waidelich, D., Scippa, S. & Vicentiis, M. de, 1992. Structure of the tunichrome of the tunicates and its role in concentrating vanadium. Angewandte Chemie, 31, 5254. [International Edition in English.]CrossRefGoogle Scholar
Bell, M.V., Pirie, B.J.S., McPhail, D.B., Goodman, B.A., Falk-Petersen, I.-B. & Sargent, J.R., 1982. Contents of vanadium and sulphur in the blood cells of Ascidia mentula and Ascidiella aspersa. Journal of the Marine Biological Association of the United Kingdom, 62, 709716.CrossRefGoogle Scholar
Botte, L. & Scippa, S., 1977. Ultrastructural study of vanadocytes in Ascidia malaca. Experientia, 33, 8081.CrossRefGoogle Scholar
Botte, L., Scippa, S. & Vincentiis, M. de, 1979. Ultrastructural localization of vanadium in the blood cells of Ascidiacea. Experientia, 35, 12281230.CrossRefGoogle ScholarPubMed
Carlson, R.M.K., 1975. Nuclear magnetic resonance spectrum of living tunicate blood cells and the structure of the native vanadium chromogen. Proceedings of the National Academy of Sciences of the United States of America, 72, 22172221.CrossRefGoogle ScholarPubMed
Dorsett, L.C., Hawkins, C.J., Grice, J.A., Lavin, M.F., Merefield, P.M., Parry, D.L. & Ross, I.L., 1987. Ferreascidin: a highly aromatic protein containing 3,4-dihydroxyphenylalanine from the blood cells of a stolidobranch ascidian. Biochemistry, 26, 80788082.CrossRefGoogle Scholar
Frank, P., Carlson, R.M.K. & Hodgson, K.O., 1986. Vanadyl ion EPR as a noninvasive probe of pH in intact vanadocytes from Ascidia ceratodes. Inorganic Chemistry, 25, 470478.CrossRefGoogle Scholar
Frank, P., Hedman, B., Carlson, R.M.K., Tyson, T.A., Roe, A.L. & Hodgson, K.O., 1987. A large reservoir of sulphate and sulphonate resides within plasma cells from Ascidia ceratodes, revealed by x-ray absorption near-edge structure spectroscopy. Biochemistry, 26, 49754979.CrossRefGoogle ScholarPubMed
Frushour, B.G. & Koenig, J.L., 1975. Raman spectroscopy of proteins. In Advances in infra-red and Raman spectroscopy, vol. 1 (ed. R.J.H., Clark and R.E., Hester), pp. 3597. London: Heydon.Google Scholar
Goodbody, I., 1974. The physiology of ascidians. Advances in Marine Biology, 12, 1149.Google Scholar
Henze, M., 1911. Untersuchungen über das Blut der Ascidien. I. Mitteilung. Die Vanadiumverbindung der Blutkörperchen. Hoppe-Seyler's Zeitschrift für Physiologische Chetnie, 72, 494501.CrossRefGoogle Scholar
Hirata, J. & Michibata, H., 1991. Valency of vanadium in the vanadocytes of Ascidia gemmata separated by density-gradient centrifugation. Journal of Experimental Zoology, 257, 160165.CrossRefGoogle Scholar
Kielkopf, J.K., 1973. New approximation to the Voigt function with applications to spectral-line profile analysis. Journal of the Optical Society of America, 63, 987995.CrossRefGoogle Scholar
Lane, D.J.W. & Wilkes, S.L., 1988. Localization of vanadium, sulphur and bromine within the vanadocytes of Ascidia mentula Müller: a quantitative electron probe x-ray microanalytical study. Ada Zoologica, 69, 135145.CrossRefGoogle Scholar
Michibata, H. 1989. New aspects of accumulation and reduction of vanadium ions in ascidians, based on concerted investigation from both a chemical and biological viewpoint. Zoological Science, 6, 639647.Google Scholar
Michibata, H., 1993. The mechanism of accumulation of high levels of vanadium by ascidians from seawater: biophysical approaches to a remarkable phenomenon. Advances in Biophysics, 29, 103133.CrossRefGoogle ScholarPubMed
Michibata, H. & Sakurai, H., 1990. Vanadium in ascidians. In Vanadium in biological systems (ed. N.D., Chasteen), pp. 153171. Netherlands: Kluwer Academic.CrossRefGoogle Scholar
Michibata, H., Iwata, Y. & Hirata, J. 1991. Isolation of highly acidic and vanadium-containing blood cells from among several types of blood cell from Ascidiidae species by density-gradient centrifugation. Journal of Experimental Zoology, 257, 306313.CrossRefGoogle Scholar
Michibata, H., Terada, T., Anada, N., Yamakawa, K., & Numakunai, T., 1986. The accumulation and distribution of vanadium, iron, and manganese in some solitary ascidians. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 171, 672681.CrossRefGoogle ScholarPubMed
Oltz, E.M., Bruening, R.C., Smith, M.J., Kustin, K. & Nakanishi, K., 1988. The tunichromes. A class of reducing blood pigments from sea squirts: isolation, structure, and vanadium chemistry. Journal of the American Chemical Society, 110, 61626172.CrossRefGoogle ScholarPubMed
Pirie, B.J.S. & Bell, M.V., 1984. The localization of inorganic elements, particularly vanadium and sulphur, in haemolymph from the ascidians Ascidia mentula (Müller) and Ascidiella aspersa (Müller). Journal of Experimental Marine Biology and Ecology, 74, 187194.CrossRefGoogle Scholar
Que, L. Jr, & Heistand, R.H. II, 1979. Resonance Raman studies on pyrocatechase. Journal of the American Chemical Society, 101, 22192221.CrossRefGoogle Scholar
Salama, S., Stong, J.D., Neilands, J.B. & Spiro, T.G., 1978. Electronic and resonance Raman spectra of iron (III) complexes of enterobactin, catechol, and N-methyl-2,3-dihydroxybenzamide. Biochemistry, 17, 37813785.CrossRefGoogle ScholarPubMed
Scippa, S., Botte, L. & Vincentiis, M. de, 1982. Ultrastructure and x-ray microanalysis of blood cells of Ascidia malaca. Ada Zoologica, 63, 121131.CrossRefGoogle Scholar
Scippa, S., Botte, L., Zierold, K. & Vincentiis, M. de, 1985. X-ray microanalytical studies on cryofixed blood cells of the ascidian Phallusia mammillata. I. Elemental composition of morula cells. Cell and Tissue Research, 239, 459461.CrossRefGoogle ScholarPubMed
Scippa, S., Vincentiis, M. de & Zierold, K., 1990. X-ray microanalytical studies on cryofixed blood cells of the ascidian Phallusia mammillata. III. Quantitative analyses of non-vanadium-accumulating blood cells. Invertebrate Reproduction and Development, 17, 141146.CrossRefGoogle Scholar
Scippa, S., Zierold, K. & Vincentiis, M. de, 1988. X-ray microanalytical studies on cryofixed blood cells of the ascidian Phallusia mammillata. II. Elemental composition of the various blood cell types. Journal of Submicroscopic Cytology and Pathology, 20, 719730.Google Scholar
Swinehart, J.H., Biggs, W.R., Halko, D.J. & Schroeder, N.C., 1974. The vanadium and selected metal contents of some ascidians. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 146, 302312.CrossRefGoogle ScholarPubMed