Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T18:21:49.424Z Has data issue: false hasContentIssue false

Populations of Streblospio (Polychaeta: Spionidae) in temperate zones: demography and production

Published online by Cambridge University Press:  11 May 2009

Rafael Sardá
Affiliation:
Centro de Estudios Avanzados de Blanes, (CSIC), Camf de Sta Barbara s/n, 17300 Blanes (Girona), Spain
Daniel Martin
Affiliation:
Centro de Estudios Avanzados de Blanes, (CSIC), Camf de Sta Barbara s/n, 17300 Blanes (Girona), Spain

Extract

The life cycle, seasonal dynamics and production of two populations of Streblospio species (Annelida: Polychaeta), S. benedicti Webster, 1879, from muddy sediments of the Great Sippewissett Salt Marsh (southern New England, USA), and S. shrubsolii (Buchanan, 1890), from muddy areas of the Alfacs Bay (north-eastern Spain), were studied from November 1986 to September 1988. Both species have life-cycles shorter than one year. The American population showed a unimodal distribution most of the year while in the European population polymodal distributions were common. Average density of S. benedicti over the two-year period ranged from 24,086 to 677 individuals m−2 (annual average 4,554). The observed numbers of S. shrubsolii ranged from 65,668 to 2,579 individuals m−2 (average 35,311). The biomass of the American population ranged from 2·1 to 0·04g dry weight m−2 (average 0·5). The values obtained for the European population ranged from 5·9 to 0·1 g dry weight m−2 (average 4·1). Secondary production was higher in the European population (15·65 g dry weight m−2 y1) than in the American population (3·0 g dry weight m−2 y−1). Production to mean biomass ratios were 4·4 y−1 for S. shrubsolii and 5·4 y−1 for S. benedicti. Population densities are compared with previously published data for other Streblospio populations.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachelet, G., 1984. Le recrutement des populations annelidiennes sur substrat meuble: aspects méthodologiques. Oceanis, 10, 735746.Google Scholar
Bachelet, G., 1987. Processes de recrutement et role des stades juveniles d'invertebrès dans lefonctionnement des systèmes benthiques de susbstrat meuble en milieu estuarine. Thêse Doctoral Etat, Université Bordeaux.Google Scholar
Bell, S.S., 1980. Meiofauna-macrofauna interactions in a high salt marsh habitat. Ecological Monographs, 50, 487505.CrossRefGoogle Scholar
Bellan, G., 1964. Contribution à l'étude systematique, bionomique et écologique des Annélides Polychètes de la Mediterranée. Recueil des Travaux de la Station Marine d'Endoume. Faculte des Sciences de Marseille, 49, Bulletin no. 33, 1371.Google Scholar
Benke, A.C., 1979. A modification of the Hynes method for estimating secondary production with particular significance for multivoltine populations. Limnology and Oceanography, 24, 168171.CrossRefGoogle Scholar
Beukema, J.J., 1985. Zoobenthos survival during severe winters on high and low tidal flats in the Dutch Wadden Sea. In Marine biology of the polar regions and effects of stress on marine organisms (ed. Gray, J.S. and Christiansen, M.E.), pp. 351361. London: John Wiley.Google Scholar
Bhattacharya, C.G., 1967. A simple method of resolution of a distribution into Gaussian components. Biometrics, 23, 115135.CrossRefGoogle ScholarPubMed
Boisseau, J.P., 1957. Technique pour l'étude quantitative de la faune interstitielle des sables. Compte Rendu du Congrès des Societés savantes de Paris et des Départements. Section des Sciences, 1, 117119.Google Scholar
Campbell, M.A., 1957. Larval development of Streblospio benedicti Webster. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 113, 336337.Google Scholar
Carlton, J.T., 1979. History, biogeography and ecology of the introduced marine and estuarine invertebrates of the Pacific Coast of North America. PhD thesis, University of California, Davis.Google Scholar
Cazaux, C., 1985. Reproduction et développement larvaire de l'annelide polychete saumatre Streblospio shrubsolii (Buchanan, 1890). Cahiers de Biologie Marine, 26, 207221.Google Scholar
Collier, M. & Jones, M.L., 1967. Observations on the reproductive and general morphology of Streblospio benedicti Webster. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 133, 462.Google Scholar
Cornet, M., 1986. Estimation de la production annuelle de populations d'Abra alba (Mollusque Bivalve) du plateau continental Sud-Gascogne. Oceanologica Acta, 9, 323332.Google Scholar
Crisp, D.J., 1971. Energy flow measurements. In Methods for the study of marine benthos (ed. Holme, N.A. and Mclntyre, A.D.), pp. 197279. Oxford: Blackwell Scientific Publications.Google Scholar
Dauer, D.M., 1984. Functional morphology and feeding behaviour of Streblospio benedicti (Polychaeta; Spionidae). In Proceedings of the First International Polychaete Conference (ed. Hutchings, P. A.), pp. 418429. Sydney: The Linnean Society of New South Wales.Google Scholar
Dauer, D.M., Robinson, W. W., Seymour, C.P. & Legget, A.T. Jr, 1982. Effects of non-point pollution on benthic invertebrates in the Lynnhaven River System. Bulletin. Water Resources Research Center, 117, 1112.Google Scholar
Dean, D., 1965. On the reproduction and larval development of Streblospio benedicti Webster. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 128, 6776.CrossRefGoogle Scholar
Eckelbarger, K.J., 1980. An ultrastructural study of oogenesis in Streblospio benedicti (Spionidae), with remarks on diversity of vitellogenic mechanisms in Polychaeta. Zoomorphology, 94, 241263.CrossRefGoogle Scholar
Fonsêca-Genevois, V. Da & Cazaux, C., 1987. Streblospio benedicti Webster, 1879 (Annélide Polychéte) dans l'estuaire de la Loire: biologie et écologie. Cahiers de Biologie Marine, 28, 231261.Google Scholar
Frithsen, J.B. & Doering, P.H., 1986. Active enhancement of particle removal from the water column by tentaculate benthic polychaetes. Ophelia, 25, 169182.CrossRefGoogle Scholar
Grassle, J.F. & Grassle, J.P., 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. Journal of Marine Research, 32, 253284.Google Scholar
Hamilton, A.L., 1969. On estimating annual production. Limnology and Oceanography, 14, 771782.CrossRefGoogle Scholar
Hynes, H.B.N. & Coleman, M.J., 1968. A simple method of assessing the annual production of stream benthos. Limnology and Oceanography, 13, 569573.CrossRefGoogle Scholar
Jackson, D., Mason, C.F. & Long, S.P., 1985. Macro-invertebrate populations and production on a salt-marsh in east England dominated by Spartina anglica. Oecologia, 65, 406411.CrossRefGoogle ScholarPubMed
Koukouras, A. & Russo, A., 1991. Midlittoral soft substratum macrofaunal assemblages in the north Aegean Sea. Pubblicazioni della Stazione Zoologica di Napoli. Marine Ecology, 12, 293316.CrossRefGoogle Scholar
Levin, L.A., 1981. Dispersion, feeding behavior and competition in two spionid polychaetes. Journal of Marine Research, 39, 99117.Google Scholar
Levin, L.A., 1984a. Life history and dispersal patterns in a dense infaunal polychaete assemblage: community structure and response to disturbance. Ecology, 65, 11851200.CrossRefGoogle Scholar
Levin, L.A., 1984b. Multiple patterns of development of Streblospio benedicti Webster (Spionidae) from three coasts of North America. Biological Bulletin, Marine Biological Laboratory, Woods Hole, 166, 494508.CrossRefGoogle Scholar
Levin, L. A., 1986. Effects of enrichment on reproduction in the opportunistic polychaete Streblospio benedicti (Webster): a mesocosm study. Biological Bulletin, Marine Biological Laboratory, Woods Hole, 171, 143160.CrossRefGoogle Scholar
Levin, L.A., Caswell, H., Depatra, K.D. & Creed, E.L., 1987. Demographic consequences of larval development mode: planktotrophy vs lecithotrophy in Streblospio benedicti. Ecology, 68, 18771886.CrossRefGoogle ScholarPubMed
Levin, L.A. & Creed, E.L., 1986. Effect of temperature and food availability on reproductive responses of Streblospio benedicti (Polychaeta: Spionidae) with planktotrophic and lecitotrophic development. Marine Biology, 92, 103113.CrossRefGoogle Scholar
Levin, L.A. & Huggett, D.V., 1991. Implications of larval development mode for polychaete population dynamics: lessons from a poecilogonous species, Streblospio benedicti. Bulletin of Marine Science, 48, 590591.Google Scholar
Manoleli, D., 1980. Les populations de polychètes des eaux saumatres oligohalines de la Roumanie. Quelques observations et problèmes. Travaux du Museum d'Histoire Naturelle Grigore Antipa. Bucaresti, 21, 111129.Google Scholar
McCann, L.D. & Levin, L.A., 1989. Oligochaete influence on settlement, growth and reproduction in a surface-deposit-feeding polychaete. Journal of Experimental Marine Biology and Ecology, 131, 233253.CrossRefGoogle Scholar
Olive, P.J.W., 1984. Environmental control of reproduction in polychaeta. In Polychaete reproduction: progress in comparative reproductive biology (ed. Fischer, A. and Pfannenstiel, H.-D.), pp. 1738. Stuttgart: Gustav Fischer Verlag.Google Scholar
Palacin, C., Martin, D. & Gili, J.M., 1991. Features of spatial distribution of benthic infauna in a Mediterranean shallow-water bay. Marine Biology, 110, 315321.CrossRefGoogle Scholar
Parisi, V., Ambrogi, R., Bedulli, D., Mezzardi, M.G. & Poli, P., 1985. Struttura e dinamica dei popolamenti bentonici negli ambienti sedimentari del delta Padano. Nova Thalassia, 7, 215251.Google Scholar
Pearson, T.H. & Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology. Annual Review. London, 16, 229311.Google Scholar
Pérez, M. & Camp, J., 1986. Distributión espacial y biomasa de la fanerógamas marinas de las bahias del Delta del Ebro. Investigacion Pesquera. Barcelona, 50, 519530.Google Scholar
Rhoads, D.C., McCall, P.L. & Yingst, J.Y., 1978. Disturbance and production on the estuarine seafloor. American Scientist, 66, 577586.Google Scholar
Rice, S.A., 1991. Reproductive isolation in the Polydora ligni complex and the Streblospio benedicti complex (Polychaeta: Spionidae). Bulletin of Marine Science, 48, 432447.Google Scholar
Sardá, R., Foreman, K. & Valiela, I., 1992. Controls of benthic invertebrate populations and production of salt marsh tidal creeks: experimental enrichment and short- and long-term effects. In Marine eutrophication and population dynamics (ed. Colombo, G.et al.), pp. 8591. Fredensborg: Olsen & Olsen.Google Scholar
Valiela, I. & Teal, J.M., 1979. The nitrogen budget of a salt marsh ecosystem. Nature, London, 280, 652656.CrossRefGoogle Scholar
Virnstein, R.W., 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology, 58, 11991217.CrossRefGoogle Scholar
Warwick, R.M., Joint, I.R. & Radford, P.J., 1979. Secondary production of the benthos in an estuarine environment. In Ecological processes in coastal environments (ed. Jefferies, R.L. and Davy, A.J.), pp. 429450. Oxford: Blackwell Scientific Publications.Google Scholar
Watling, L., 1975. Analysis of structural variations in a shallow estuarine deposit-feeding community. Journal of Experimental Marine Biology and Ecology, 19, 275313.CrossRefGoogle Scholar
Watzin, M.C., 1983. The effects of meiofauna on settling macrofauna: meiofauna may structure macrofaunal communities. Oecologia, 59, 163166.CrossRefGoogle ScholarPubMed
Whitlatch, R.B., 1977. Seasonal changes in the community structure of the macrobenthos inhabiting the intertidal sand and mud flats of Barnstable Harbor, Massachusetts. Biological Bulletin, Marine Biological Laboratory, Woods Hole, 152, 275294.CrossRefGoogle Scholar
Wiltse, W.I., Foreman, K.H., Teal, J.M. & Valiela, I., 1984. Effects of predators and food resources on the macrobenthos of salt marsh creeks. Journal of Marine Research, 42, 923942.CrossRefGoogle Scholar
Wolff, W.J., 1973. The estuary as a habitat. An analysis of data on the soft-bottom macrofauna of the estuarine area of the Rivers Rhine, Meuse and Scheldt. Zoologische Verhandelingen, no. 126, 242 pp.Google Scholar
Zajac, R.N. & Whitlatch, R.B., 1982. Responses of estuarine infauna to disturbance. I. Spatial and temporal variation of initial recolonization. Marine Ecology Progress Series, 10, 114.CrossRefGoogle Scholar