Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T17:21:31.941Z Has data issue: false hasContentIssue false

Population dynamics and reproductive output of the non-indigenous crab Charybdis hellerii in the south-eastern Caribbean Sea

Published online by Cambridge University Press:  09 June 2011

Juan A. Bolaños
Affiliation:
Grupo de Investigación en Carcinología, Escuela de Ciencias Aplicadas del Mar, Núcleo Nueva Esparta, Universidad de Oriente, Isla Margarita, Venezuela
J. Antonio Baeza*
Affiliation:
Old Dominion University, Norfolk, Virginia, USA Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, FL 34949, USA Departamento de Biología Marina, Universidad Católica del Norte, Sede Coquimbo, Larrondo 1281, Coquimbo, Chile
Jesús E. Hernandez
Affiliation:
Grupo de Investigación en Carcinología, Escuela de Ciencias Aplicadas del Mar, Núcleo Nueva Esparta, Universidad de Oriente, Isla Margarita, Venezuela
Carlos Lira
Affiliation:
Grupo de Investigación en Carcinología, Escuela de Ciencias Aplicadas del Mar, Núcleo Nueva Esparta, Universidad de Oriente, Isla Margarita, Venezuela
Régulo López
Affiliation:
Grupo de Investigación en Carcinología, Escuela de Ciencias Aplicadas del Mar, Núcleo Nueva Esparta, Universidad de Oriente, Isla Margarita, Venezuela
*
Correspondence should be addressed to: J. Antonio Baeza, Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, FL 34949, USA email: [email protected]

Abstract

Charybdis hellerii is one of several poorly known non-indigenous crabs in the Caribbean. In this study we report on the reproductive dynamic of a shallow subtidal population that invaded Isla Margarita, Venezuela, south-eastern Caribbean Sea > 15 years ago and has persisted in the region up to date. Male and female crabs, both large and small, were found year-round at the study site. The size–frequency distribution indicated a lifespan of 2–3 years. Charybdis hellerii reproduces continuously but with very low intensity during the year. Small individuals (<25 mm carapace length) were uncommon and intermittently found during the study period. Sex-ratio varied between 0.1 and 0.65 (mean ± SD = of 0.46 ± 0.14) and did not differ significantly from 1:1 ratio during most of the year. The size of the smallest brooding female was 36.81 mm carapace width (CW). Behavioural size at first maturity (movable abdomen) in males and females was estimated to be 22.39 mm CW (confidence limits: 18.35–24.72) and 37.43 mm CW (35.55–39.09), respectively. Reproductive output, estimated as the ratio of embryo to female body dry mass, varied between 0.052 and 0.084 (0.07 ± 0.008). Also, reproductive output was size-dependent with large females allocating proportionally less resources to egg production than small females. The reproductive schedule here reported for C. hellerii disagrees with the generalized idea of exotic populations ‘thriving’ in an environment free of natural enemies (e.g. predators, competitors and diseases).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, L.W.J. (2005) California's reaction to Caulerpa taxifolia: a model for invasive species rapid response. Biological Invasions 7, 10031016.CrossRefGoogle Scholar
Baeza, J.A. and Fernández, M. (2002) Active brood care in Cancer setosus (Crustacea: Decapoda: Cancridae): the relationship between female behaviour, embryo oxygen consumption, and the cost of brooding. Functional Ecology 16, 241251.CrossRefGoogle Scholar
Baeza, J.A., Braga, A.A., López-Greco, L.S., Perez, E., Negreiros-Fransozo, M.L. and Fransozo, A. (2010) Population dynamics, sex ratio and size at sex change in a protandric-simultaneous hermaphrodite, the spiny shrimp Exhippolysmata oplophoroides. Marine Biology 157, 26432653.CrossRefGoogle Scholar
Bauer, R.T. (1985) Diel and seasonal variation in species composition and abundance of the caridean shrimps (Crustacea, Decapoda) from seagrass meadows in northern Puerto Rico. Bulletin of Marine Science 36, 150162.Google Scholar
Bauer, R.T. (1989) Continuous reproduction and episodic recruitment in nine shrimp species inhabiting a tropical seagrass meadow. Journal of Experimental Marine Biology and Ecology 127, 175187.CrossRefGoogle Scholar
Calado, R. (2008) Marine ornamental shrimp: biology, aquaculture and conservation. London: Wiley and Blackwell.Google Scholar
Dias, P.C. (1996) Sources and sinks in population biology. Trends in Ecology and Evolution 2, 326330.CrossRefGoogle Scholar
Díaz, H. and Conde, J.E. (1989) Population dynamics and life history of the mangrove crab Aratus pisonii (Brachyura, Grapsidae) in a marine environment. Bulletin of Marine Science 45, 148163.Google Scholar
Dineen, J., Clark, P.E., Hines, A.H., Reed, S.A. and Walton, H.P. (2001) Life history, larval description, and natural history of Charybdis hellerii (Decapoda, Brachyura, Portunidae) an invasive crab in the western Atlantic. Journal of Crustacean Biology 21, 774805.CrossRefGoogle Scholar
Felder, D.L. (1982) Reproduction of the snapping shrimps Synalpheus fritzmuelleri and S. apioceros (Crustacea: Decapoda: Alpheidae) on a sublittoral reef off Texas. Journal of Crustacean Biology 2, 535543.CrossRefGoogle Scholar
Fischer, S. and Wolff, M. (2006) Fisheries assessment of Callinectes arcuatus (Brachyura, Portunidae) in the Gulf of Nicoya, Costa Rica. Fisheries Research 77, 301311.CrossRefGoogle Scholar
Haefner, P.A. Jr (1990) Morphometry and size at maturity of Callinectes ornatus (Brachyura, Portunidae) in Bermuda. Bulletin of Marine Science 46, 274286.Google Scholar
Hernandez, G. and Bolaños, J.A. (1995) Additions to the anomuran and brachyuran fauna of northeastern Venezuela. The Crustacean Society Summer Meeting, May 1995, pp. 2527. [Abstract.]Google Scholar
Hines, A. (1982) Allometric constraints and variables of reproductive effort in brachyuran crabs. Marine Biology 69, 309320.CrossRefGoogle Scholar
Holland, B.S. (2000) Genetics of marine bioinvasions. Hydrobiologia 420, 6371.CrossRefGoogle Scholar
Lemaitre, R. (1995) Charybdis hellerii (Milne Edwards, 1867), a nonindigenous portunid crab (Crustacea: Decapoda: Brachyura) discovered in the Indian River Lagoon system in Florida. Proceedings of the Biological Society of Washington 108, 643648.Google Scholar
McMillen-Jackson, A. (2008) First record of the Indo-Pacific swimming crab, Charybdis hellerii (A. Milne-Edwards, 1867) in the Gulf of Mexico. Crustaceana 81, 889894.CrossRefGoogle Scholar
Mantelatto, F. and Garcia, R. (2001) Biological aspects of the nonindigenous portunid crab Charybdis hellerii in the western tropical south Atlantic. Bulletin of Marine Science 68, 469477.Google Scholar
Mantelatto, F. and Souza-Carey, M. (1998) Brachyura (Crustacea, Decapoda) associated to Schizoporella unicornis (Bryozoa, Gymnolaemata) in Ubatuba Bay (SP), Brazil. Brazilian Archives of Biology and Technology 41, 212217.CrossRefGoogle Scholar
Negreiros-Fransozo, M.L. (1996) The zoea I of Charybdis helleri (A. Milne-Edwards, 1867) (Decapoda, Portunidae) obtained in the laboratory. Nauplius 4, 165168.Google Scholar
Por, F.D. (1971) One hundred years of Suez Canal—a century of Lessepsian migration: retrospect and viewpoints. Systematic Zoology 20, 138159.CrossRefGoogle Scholar
Robbins, R., Sakari, M., Baluchi, S.N. and Clark, P.F. (2006) The occurrence of Eriocheir sinensis H. Milne Edwards, 1853 (Crustacea: Brachyura: Varunidae) from the Caspian Sea region, Iran. Aquatic Invasions 1, 3234.CrossRefGoogle Scholar
Sumpton, W. (1990) Morphometric growth and fisheries biology of the crab, Charybdis natator (Herbst) in Moreton Bay, Australia (Decapoda: Brachyura). Crustaceana 46, 425431.Google Scholar
Tavares, M. and Amoroux, J.M. (2003) First record of the non-indigenous crab, Charybdis hellerii (A. Milne-Edwards, 1867) from French Guyana (Decapoda, Brachyura, Portunidae). Crustaceana 76, 625630.Google Scholar
Tavares, M. and Braga de Mendonça, J. (1996) Charybdis hellerii (A. Milne Edwards, 1867) (Brachyura: Portunidae), eighth nonindigenous marine decapod recorded from Brazil. Crustacean Research 25, 151157.CrossRefGoogle Scholar
Tavares, M. and Braga de Mendonça, J. (2005) Introduçao de crustáceos decápodos exóticos no Brasil: Uma roleta ecológica. Agua de lastro e bioinvasao. Interciencia 6, 5975.Google Scholar
Torchin, M., Lafferty, K. and Kuris, A. (2001) Release from parasites as natural enemies: increased performance of a globally introduce marine invasions. Biological Invasions 3, 333345.CrossRefGoogle Scholar
Van Engel, W.A. (1990) Development of the reproductively functional form in the male blue crab, Callinectes sapidus. Bulletin of Marine Science 46, 1322.Google Scholar
Williams, A.B. (1965) Marine decapod crustaceans of the Carolinas. Fisheries Bulletin 65, 1298.Google Scholar
Whitfield, P.E., Gamer, T., Viues, S.P., Gilligan, M.R., Courtenay, W.R. Jr, Ray, G. C. and Hare, J.A. (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Marine Ecology Progress Series 235, 289297.CrossRefGoogle Scholar
Wilson, K., and Hardy, I.C.W. (2002) Statistical analysis of sex ratios: an introduction. In Hardy, I.C.W. (ed.) Sex ratios: concepts and research methods. Cambridge: Cambridge University Press, pp. 4892.CrossRefGoogle Scholar
Zar, J.H. (1999) Biostatistical analysis. 4th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar