Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T15:05:35.737Z Has data issue: false hasContentIssue false

The Physiology of Maturation and Fertilization in Pomatoceros Triqueter (L.) I. The Nature of the Material

Published online by Cambridge University Press:  11 May 2009

J. B. Cragg
Affiliation:
Assistant Lecturer in Zoology, University College of North Wales, Bangor

Extract

The description of the material used in the present investigation does not conform with that of Horstadius. Attention is drawn to this lack of agreement. A hypothesis based on viscosity changes within the egg has been advanced to explain the rounding off of eggs in sea water.

By means of what is called the transfer series the egg batch has been divided into a number of parts; the last liberated eggs being the ripest. The occurrence of large numbers of egg batches giving low maturity values has been attributed to maturity resulting from a series of changes whose rate after initiation gradually increases.

Attention is drawn to seasonal changes in the reactions of the germinal products. No definite lunar periodicity is shown in the ripening of the eggs.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dalcq, A., 1923. Recherches sur la physiologie de l'œuf en maturation. Arch. Biol. Liége, Vol. 33, p. 79.Google Scholar
Dalcq, A., 1924. Recherches expérimentales et cytologiques sur la maturation et l'activation de l'œuf d'Asterias glacialis. Arch. Biol. Liége, Vol. 34, p. 507.Google Scholar
Dalcq, A., 1928. Le rôle du calcium et du potassium dans l'entrée en maturation de l'œuf de pholade (Barnea candida). Protoplasma, Tome 4, No. 1, p. 18.CrossRefGoogle Scholar
Fry, H. J., 1936. Studies of the mitotic figure. V. The time schedule of mitotic changes in developing Arbacia eggs. Biol. Bull., Vol. 70, p. 89.CrossRefGoogle Scholar
Fuchs, H. M., 1915. Studies in the physiology of fertilization. Journ. Genet., Vol. 4, p. 215.CrossRefGoogle Scholar
Goldfarb, A. J., 1917. Variability of eggs and sperm of sea-urchins. Publ. Carneg. Instn., No. 251, p. 71.Google Scholar
Goldforb, A. J., 1929. Changes in agglutination of ageing germ cells. Biol. Bull., Vol. 57, p. 350.CrossRefGoogle Scholar
Grave, B. H., 1928. Vitality of the gametes of Cumingia tellinoides. Biol. Bull., Vol. 54, p. 351CrossRefGoogle Scholar
Grave, B. H. & Oliphant, J. F., 1930. The longevity of unfertilized gametes. Biol. Bull., Vol. 59, p. 233.CrossRefGoogle Scholar
Gray, J., 1931. Experimental Cytology. Cambridge.Google Scholar
Harris, J. E., 1935. Studies on living protoplasm. I. Journ. Exper. Biol., Vol. 12, p. 65.CrossRefGoogle Scholar
Hoadley, L., 1934. Pulsations in the Nereis egg. Biol. Bull., Vol. 67, p. 484.CrossRefGoogle Scholar
Hobson, A. D., 1932. On the vitelline membrane of the egg of Psammechinus miliaris and of Teredo norvegica. Journ. Exper. Biol., Vol. 9, p. 93.CrossRefGoogle Scholar
Hörstadius, S., 1923. Physiologische Untersuchungen über die Eireifung bei Pomatoceros triqueter. Arch. Mikr. Anat., Bd. 98, p. 1.Google Scholar
Waterman, A. J., 1936. Membranes and germinal vesicle of the eggs of Sabellaria vulgaris. Biol. Bull., Vol. 71, p. 46.CrossRefGoogle Scholar