Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T19:15:27.506Z Has data issue: false hasContentIssue false

Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria)

Published online by Cambridge University Press:  29 July 2008

Paulyn Cartwright*
Affiliation:
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA
Nathaniel M. Evans
Affiliation:
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA
Casey W. Dunn
Affiliation:
Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA
Antonio C. Marques
Affiliation:
Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
Maria Pia Miglietta
Affiliation:
Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
Peter Schuchert
Affiliation:
Muséum d'Histoire Naturelle, CH-1211, Genève, Switzerland
Allen G. Collins
Affiliation:
National Systematics Laboratory of NOAA Fisheries Service, NMNH, Smithsonian Institution, Washington, DC 20013, USA
*
Correspondence should be addressed to: Paulyn Cartwright, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA email: [email protected]

Abstract

Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clades.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bouillon, J. (1978) Sur un nouveau genre et une nouvelle espèce de Ptilocodidae, Hydrichtelloides reticulata et la super-famille des Hydractinoidea (Hydroida–Athecata). Steenstrupia 5, 5367.Google Scholar
Bouillon, J. (1985) Essai de classification des hydropolypes–hydroméduses (Hydrozoa–Cnidaria). Indo-Malayan Zoology 2, 29243.Google Scholar
Bouillon, J. (1994) Classe des hydrozoaires (Hydrozoa Owen, 1843). In Grassé, P.P. (ed.) Traité de Zoologie T III fasc. 2 Cnidaires. Paris: Masson, pp. 29416.Google Scholar
Bouillon, J., Gravili, C., Pagès, F., Gili, J.M. and Boero, F. (2006) An introduction to Hydrozoa. Paris: Publications Scientifiques du Muséum, Paris.Google Scholar
Bouillon, J., Medel, D. and Peña Cantero, A.L. (1997) The taxonomic status of the genus Stylactaria Stechow, 1921 (Hydroidomedusae, Anthomedusae, Hydractiniidae), with the description of a new species. Scientia Marina 61, 471486.Google Scholar
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540552.CrossRefGoogle ScholarPubMed
Collins, A.G. (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. Journal of Evolutionary Biology 15, 418432.CrossRefGoogle Scholar
Collins, A.G., Schuchert, P., Marques, A.C., Jankowski, T., Medina, M. and Schierwater, B. (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biology 55, 97115.CrossRefGoogle Scholar
Collins, A.G., Winkelmann, S., Hadrys, H. and Schierwater, B. (2005) Phylogeny of Capitata and Corynidae (Cnidarian, Hydrozoa) in light of mitochondrial 16S rDNA data. Zoologica Scripta 34, 9199.CrossRefGoogle Scholar
Cunningham, C.W. and Buss, L.W. (1993) Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochemical Systematics and Ecolgy 21, 5769.CrossRefGoogle Scholar
Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C.S., Opresko, D.M., Rodrigues, E., Romano, S.L. and Stake, J.L. (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668, 127182.CrossRefGoogle Scholar
Dunn, C.W., Pugh, P.R. and Haddock, S.H.D. (2005) Molecular phylogenetics of siphonophora (Cnidaria), with implications for the evolution of functional specialization. Systematic Biology 54, 916935.CrossRefGoogle ScholarPubMed
Evans, N.M., Lindner, A., Raikova, E.V., Collins, A.G. and Cartwright, P. (2008) Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria. BMC Evolutionary Biology 8, 139.CrossRefGoogle ScholarPubMed
Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797.CrossRefGoogle ScholarPubMed
Govindarajan, A.F., Boero, F. and Halanych, K.M. (2006) Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Molecular Phylogenetics and Evolution 38, 820834.CrossRefGoogle ScholarPubMed
Leclère, L., Schuchert, P. and Manuel, M. (2007) Phylogeny of the Plumularioidea (Hydrozoa, Leptothecata): evolution of colonial organisation and life cycle. Zoologica Scripta 36, 371394.CrossRefGoogle Scholar
Marques, A.C. (1996) A critical analysis of a cladistic study of the genus Eudendrium (Cnidaria: Hydrozoa), with some comments on the family Eudendriidae. Journal of Comparative Biology 1, 153162.Google Scholar
Marques, A.C. (2001a) Simplifying hydrozoan classification: inappropriateness of the group Hydroidomedusae in a phylogenetic context. Contributions to Zoology 70, 175179.CrossRefGoogle Scholar
Marques, A.C. (2001b) O gênero Eudendrium (Cnidaria, Hydrozoa, Anthomedusae) no Brasil. Papéis Avulsos de Zoologia 41, 329405.Google Scholar
Marques, A.C. and Collins, A.G. (2004) Cladistic analysis of Medusozoa and cnidarian evolution. Invertebrate Biology 123, 2342.CrossRefGoogle Scholar
Marques, A.C. and Migotto, A.E. (2001) Cladistic analysis and new classification of the family Tubulariidae (Hydrozoa, Anthomedusae). Papéis Avulsos de Zoologia 41, 465488.Google Scholar
Marques, A.C., Peña Cantero, A.L. and Migotto, A.E. (2006) An overview of the phylogeny of the families Lafoeidae and Hebellidae (Hydrozoa: Leptothecata): their composition and classification. Invertebrate Systematics 20, 4358.CrossRefGoogle Scholar
Medina, M., Collins, A.G., Silberman, J.D. and Sogin, M.L. (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proceedings of the National Academy of Science of the USA 98, 97079712.CrossRefGoogle ScholarPubMed
Medlin, L.H., Elwood, H.J., Stickel, S. and Sogin, M.L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491499.CrossRefGoogle ScholarPubMed
Peña Cantero, A.L. and Marques, A.C. (1999) Phylogenetic analysis of the Antarctic genus Oswaldella Stechow, 1919 (Hydrozoa, Leptomedusae, Kirchenpaueriidae). Contributions to Zoology 68, 8393.CrossRefGoogle Scholar
Petersen, K.W. (1979) Development of coloniality in Hydrozoa. In Larwood, G. and Rosen, B.R. (eds) Biology and systematics of colonial organisms. London: Academic Press, pp. 105139.Google Scholar
Petersen, K.W. (1990) Evolution and taxonomy in capitate hydroids and medusae (Cnidaria: Hydrozoa). Zoological Journal of the Linnean Society 100, 1231.CrossRefGoogle Scholar
Posada, D. and Crandall, K.A. (2000) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle Scholar
Rees, W.J. (1957) Evolutionary trends in the classification of capitate hydroids and medusae. Bulletin of the British Museum (Natural History) Zoology 4, 455534.Google Scholar
Schuchert, P. (1996) The marine fauna of New Zealand: athecate hydroids and their medusae (Cnidaria: Hydrozoa). New Zealand Oceanographic Institute Memoir 106, 1159.Google Scholar
Schuchert, P. (2001) Hydroids of Greenland and Iceland (Cnidaria, Hydrozoa). Meddelelser om Grønland, Bioscience 53, 1184.CrossRefGoogle Scholar
Schuchert, P. (2004) Revision of the European athecate hydroids and their medusae (Hydrozoa, Cnidaria): families of Oceanidae and Pachycordylidae. Revue Suisse de Zoologie 111, 315369.CrossRefGoogle Scholar
Schuchert, P. and Reiswig, H.M. (2006) Brinckmannia hexactinellidophila, n. gen., n. sp.: a hydroid living in tissues of glass sponges of the reefs, fjords, and seamounts of Pacific Canada and Alaska. Canadian Journal of Zoology 84, 564572.CrossRefGoogle Scholar
Swofford, D.L. (1998) PAUP*—Phylogenetic Analysis Using Parsimony (*and other methods). Sunderland, MA: Sinauer.Google Scholar
Van Iten, H., Leme, J.M., Simões, M.G., Marques, A.C. and Collins, A.G. (2006) Reassessment of the phylogenetic position of conulariids (?Ediacaran–Triassic) within the subphylum Medusozoa (Phylum Cnidaria). Journal of Systematic Paleontology 4, 109118.CrossRefGoogle Scholar
Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD thesis. Austin: The University of Texas.Google Scholar