Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T06:31:34.124Z Has data issue: false hasContentIssue false

On the ‘Visceral Nervous System’ of Ciona

Published online by Cambridge University Press:  11 May 2009

G.O. Mackie
Affiliation:
Department Of Biology, University Of Victoria, Victoria, British Columbia, V8W 2Y2, Canada

Extract

Ciona intestinalis has a well developed nerve plexus associated with the dorsal strand, as first described by Marco Fedele. The dorsal strand plexus is immunoreactive with antisera against gonadotropin-releasing hormone. Immunoreactivity is seen in the cell bodies, which lie peripherally, and in processes which run throughout the dorsal blood sinus, enter the branchial sac and penetrate the brain via the visceral nerve. The plexus provides a rich innervation of the gonoducts, and processes have been seen in the gonads. The pericardium is not innervated by processes from the plexus and the rectum is poorly innervated, but the full extent of the plexus in the viscera remains uncertain. While this study confirms many of Fedele's observations, it does not support the view that the dorsal strand plexus is equivalent to the vertebrate visceral nervous system.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkett, S.A., 1987. Ciliary arrest controlled by identified central neurons in a urochordate (Ascidiacea). Journal of Comparative Physiology, 161A, 837847.CrossRefGoogle Scholar
Arkett, S. A., Mackie, G.O. & Singla, C.L., 1989. Neuronal organization of the ascidian (Urochordata) branchial basket revealed by cholinesterase activity. Cell and Tissue Research, 257, 285294.CrossRefGoogle Scholar
Aubert, H. 1954. Recherches sur le cordon dorsale et le tractus génital de deux espèces d'ascidies. Recueil des Travaux de la Station Marine d'Endoume, Faculté des Sciences de Marseille, 12, 128.Google Scholar
Bollner, T., Howat, S., Thorndyke, M.C. & Beesley, P.W., in press. Regeneration and postmetamorphic development of the central nervous system in the protochordate Ciona intestinalis; a study with monoclonal antibodies. Cell and Tissue Research.Google Scholar
Bone, Q., 1959. Observations upon the nervous systems of pelagic tunicates. Quarterly Journal of Microscopical Science, 100, 167181.Google Scholar
Bone, Q., 1960. The origin of the chordates. Journal of the Linnean Society. Zoology, 44, 252269.CrossRefGoogle Scholar
Bone, Q. & Whitear, M., 1958. A note on the innervation of the pericardium in Ciona. Pubblicazioni della Stazione Zoologica di Napoli, 30, 337341.Google Scholar
Brien, P., 1933. Régéneration thoracique chez Archiascidia neapolitana (Julin). Structure du systeme nerveux central. Bulletin Biologique de la France et de la Belgique, 67, 100124.Google Scholar
Bullock, T.H. & Horridge, G.A., 1965. Structure and function in the nervous systems of Invertebrates. San Francisco: Freeman.Google Scholar
Dufour, S., Monniot, F., Monniot, C, Baloche, S., Kerdelhue, B. & Fontaine, Y.-A., 1988. Dosage radioimmunologique, chez Ascidiella aspersa, d'un facteur de type gonadolibérine (GnRH) de poids moleculaire apparent supérieur à celui du décapeptide mammalien. Comptes Rendus de I'Académie des Sciences. Paris, 306, 253256.Google Scholar
Elwyn, A., 1937. Some stages in the development of the neural complex in Ecteinascidia turbinata. Bulletin of the Neurological Institute of New York, 6, 163177.Google Scholar
Fedele, M, 1923. Sulla organizzazione e le caratteristiche funzionali dell'attivita nervosá dei Tunicati. I. Ricerche sul sistema nervoso periferico degli Ascidiacea. Atti dell' Accademia Reale dei Lincei Rendiconti Series 5, 32, 98102.Google Scholar
Fedele, M, 1927. Ancora sulla organizzazione e le caratteristiche funzionali dell'attività nervosa dei Tunicati. III. II sistema nervoso viscerale. Atti dell'Accademia Nazionale dei Lincei Rendiconti Series 6, 6, 532537.Google Scholar
Fedele, M., 1938. II sistema nervoso degli ‘Ascidiacea’ nel piano di organizzazione dei Cordati. Atti dell'Accademia Nazionale dei Lincei Rendiconti Series 6, 27, 370376.Google Scholar
Georges, D. & Dubois, M.P., 1980. Mise en évidence par des techniques d'immunofluorescence d'un antigène de type LH-RH dans le système nerveux de Ciona intestinalis (tunicier ascidiacé). Comptes Rendus de I'Academie des Sciences. Paris, 290, 2931.Google Scholar
Goodbody, I., 1974. The physiology of ascidians. Advances in Marine Biology, 12, 1149.Google Scholar
Hisaw, F.L. Jr, Botticelli, C.R. & Hisaw, F.L., 1966. A study of the relation of the neural glandganglionic complex to gonadal development in an ascidian. General and Comparative Endocrinology, 7, 19.CrossRefGoogle Scholar
Huus, J., 1924. Genitalorgane und ‘Ganglio-genitalstrang’ bei Corella parallelogramma O.F.M. Ein Beitrag zur Kenntnis der Postlarvalen Entwicklung der Ascidien. Videnskapsselskapets Skrifter.I. Akademie Oslo. Matematisk-Naturvidenskapelig Klasse, 19, 150.Google Scholar
Irons, K.P., 1986. Gonadogenesis in the solitary ascidian Corella inflata, with a review of the literature on ascidian gonadogenesis and gonad origin. MSc thesis, University of Alberta, Canada.Google Scholar
Kelsall, R., Coe, I.R. & Sherwood, N.M., 1990. Phylogeny and ontogeny of gonadotropin-releasing hormone: comparison of guinea pig, rat and a protochordate. General and Comparative Endocrinology, 78, 479494.CrossRefGoogle Scholar
Kowalevsky, A.O., 1874. Über die Knospung der Ascidien. Archivfiir Mikroskopische Anatomie, 10, 441470.CrossRefGoogle Scholar
Koyama, H. & Kusunoki, T., 1993. Organization of the cerebral ganglion of the colonial ascidian Polyandrocarpa misakiensis. Journal of Comparative Neurology, 338, 549559.CrossRefGoogle ScholarPubMed
Lane, N.J., 1972. Neurosecretory cells in the cerebral ganglion of adult tunicates: fine structure and distribution of phosphatases. Journal of Ultrastructure Research, 40, 480497.CrossRefGoogle ScholarPubMed
Lender, T. & Bouchard-Madrelle, C, 1964. Etude expérimentale de la régéneration du complexe neural de Ciona intestinalis (prochorde). Bulletin de la Societé Zoologique de France, 89, 546554.Google Scholar
Mackie, G.O., Paul, D.H., Singla, C.L., Sleigh, M.A. & Williams, D.E., 1974. Branchial innervation and ciliary control in the ascidian Corella. Proceedings of the Royal Society B, 187, 135.Google ScholarPubMed
Millar, R.H., 1953. Ciona. LMBC Memoirs on Typical British Marine Plants and Animals, 35, 1123.Google Scholar
Sherwood, N.M., 1987. The GnRH family of peptides. Trends in Neurosciences, 10, 129132.CrossRefGoogle Scholar
Sherwood, N.M., Lovejoy, D.A. & Coe, I.R., 1993. Origin of mammalian gonadotropin-releasing hormones. Endocrine Reviews, 14, 241254.CrossRefGoogle ScholarPubMed
Wada, H. & Satoh, N., 1994. Details of the evolutionary history from invertebrates to vertebrates, as deduced from the sequences of 18S rDNA. Proceedings of the National Academy of Sciences of the United States of America, 91, 18011804.CrossRefGoogle Scholar
Webb, J.F. & Noden, D.M., 1993. Ectodermal placodes: contribution to the development of the vertebrate head. American Zoologist, 33, 434447.CrossRefGoogle Scholar
Willey, A., 1893. Studies on Protochordata. II. The development of the neuro-hypophysial system in Ciona intestinalis and Clavelina lepadiformis, with an account of the origin of the sense organs in Ascidia mentula. Quarterly Journal of Microscopical Science, 35, 295316.Google Scholar
Woollacott, R.M. & Porter, M.E., 1977. A synchronized multicellular movement initiated by light and mediated by microfilaments. Developmental Biology, 61, 4157.CrossRefGoogle ScholarPubMed
Zamboni, L. & Demartino, C, 1967. Buffered picric acid-formaldehyde: a new, rapid fixative for electron microscopy. Journal of Cell Biology, 35, 148A.Google Scholar