Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T15:04:21.292Z Has data issue: false hasContentIssue false

On the symbiosis between Amphidinium klebsii [Dinophyceae] and Amphiscolops langerhansi [Turbellaria: Acoela]1

Published online by Cambridge University Press:  11 May 2009

D. L. Taylor
Affiliation:
Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Rickenbacker Causeway, Miami, Florida 33149, U.S.A.

Extract

INTRODUCTION

Algal-invertebrate symbiosis is common among species of acoelus Turbellaria in both marine and freshwater environments (Droop, 1963; Buchner, 1965; McLaughlin & Zahl, 1966). Associations involving these organisms exhibit broad variations in the amount of integration achieved through the reciprocal relations of hosts and symbionts. In the symbiosis involving Convoluta roscqffensis Graff, the maximum degree of intimacy is achieved, and the host appears totally dependent on its symbiont for its nutritional requirements (Keeble & Gamble, 1907; Keeble, 1910). This type of closed symbiosis is unknown in other invertebrate phyla and may even be unique among turbellarians. Similarly, the association between Amphiscolops langerhansi (Graff) and a unicellular alga is a typical example of the more common, open or facultative symbiosis. Both species (with their algal partners) are potentially useful as investigative tools in the study of cellular interaction in algal-invertebrate symbiosis, and may provide the basis for understanding the broader aspects of cellular integration in metazoan tissues. Recent studies of C. roscqffensis provide a basis for understanding the biology of the symbiosis which it sustains (Parke & Manton, 1967; Provasoli, Yamasu & Manton, 1968; Provasoli, Yamasu & Mabuchi, 1969). The present communication is intended to provide similar information on the association found in A. langerhansi.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution no. 1326 from the Rosenstiel School of Marine and Atmospheric Sciences.

References

REFERENCES

Apelt, G., 1969. Fortplanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien. Mar. Biol., Vol. 4, pp. 267325.Google Scholar
Ax, P. & Apelt, G., 1965. Die ‘Zooxanthellen’ von Convoluta convoluta (Turbellaria: Acoela) entstehen aus Diatomeen. Erster Nacheis einer Endosymbiose zwischen Tieren und Kieselalgen. Naturwissenschaften, Jg. 52, Heft 15, pp. 444–6.Google Scholar
Brandt, K., 1883. Uber die morphologische und physiologische Bedertung des Chlorophylls bie Thieren. Mitt. zool. Stn Neapel, Bd. 4, pp. 191302.Google Scholar
Buchner, P., 1965. Endosymbiosis of Animals with Plant Microorganisms, 909 pp. New York: Interscience.Google Scholar
Decker, J. P., 1955. A rapid, post illumination deceleration of respiration in green leaves. Pl. Physiol., Lancaster, Vol. 30, pp. 82–4.CrossRefGoogle Scholar
Dodge, J. D., 1968. The fine structure of chloroplasts and pyrenoids in some marine dinoflagellates. J. Cell Sci., Vol. 3, pp. 41–8.CrossRefGoogle ScholarPubMed
Dodge, J. D. & Crawford, R. M., 1968. Fine structure of the dinoflagellate Amphidinium carteri Hulbert. Protistologica, Vol. 4, pp. 231–42.Google Scholar
Dodge, J. D. & Crawford, R. M., 1970. A survey of thecal fine structure in the Dinophyceae. Bot. J. Linn. Soc, Vol. 63, pp. 5367.CrossRefGoogle Scholar
Dorey, A. E., 1965. The organization and replacement of the epidermis in acoelus turbellarians. Q. Jl microsc. Sci., Vol. 106, pp. 147–72.Google Scholar
Droop, M. R., 1963. Algae and invertebrates in symbiosis. In Symbiotic Associations (eds. Nutman, P. S. and Mosse, B.), pp. 171–99. Cambridge University Press.Google Scholar
Graff, L. Von, 1882. Monographic der Turbellarien. I. Rhabdocoelida, pp. 441. Leipzig: Wilhelm Engelmann.Google Scholar
Graff, L. Von, 1905. Turbellaria I. Acoela. In Das Tierreich (ed. Schultz, F. E.), Vol. 23, pp. 28–9. Berlin: Friedlander.Google Scholar
Hanson, E. D., 1960. Asexual reproduction in acoelus turbellaria. Yale J. Biol. Med., Vol. 33, pp. 107–11.Google ScholarPubMed
Hymen, L. H., 1937. Reproductive system and copulation in Amphiscolops langerhansi (Turbellaria Acoela). Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 72, pp. 319–26.Google Scholar
Hyman, L. H., 1951. The Invertebrates: Platyhelminthes through Rhynchocoela. The Acoelomate Bilateria. Vol. 2, 550 pp. New York: McGraw-Hill.Google Scholar
Jackson, W. A. & Volk, R. J., 1970. Photorespiration. A. Rev. Pl. Physiol., Vol. 21, pp. 385432.Google Scholar
Kanwisher, J. W., 1959. Polarographic oxygen electrode. Limnol. Oceanogr., Vol. 4, pp. 210–17.CrossRefGoogle Scholar
Keeble, F., 1910. Plant Animals. 163 pp. Cambridge University Press.Google Scholar
Keeble, F. & Gamble, F. W., 1907. The origin and nature of the green cells of Convoluta roscoffensis. Q. Jl microsc. Sci., Vol. 51, pp. 167219.Google Scholar
Kofoid, C. A. & Swezy, O., 1921. The Free-living Unarmored Dinoflagellates. Mem. Univ. Calif., Vol. 5, pp. 1562.Google Scholar
Leadbeater, B. S. C. & Dodge, J. D., 1967. An electron microscope study of dinoflagellate flagella. J. gen. Microbiol., Vol. 46, pp. 305–14.Google Scholar
Lebour, M. V., 1925. The Dinoflagellates of Northern Seas. 250 pp. Plymouth.Google Scholar
Leedale, G. F., Leadbeater, B. S. C. & Massalski, A. 1970. The intracellular origin of flagellar hairs in the Chrysophyceae and Xanthophyceae. J. Cell Set., Vol. 6, pp. 701–19.CrossRefGoogle ScholarPubMed
Manton, I. & Parke, M., 1965. Observations on the fine structure of two species of Platymonas with special reference to flagellar scales and the mode of origin of the theca. J. mar. biol. Ass. U.K., Vol. 45, pp. 743–54.CrossRefGoogle Scholar
Massalski, A. & Leedale, G. F., 1969. Cytology and ultrastructure of the Xanthophyceae. I. Comparative morphology of the zoospores of Bumilleria sicula Borzi and Tribonema vulgare Pascher. Br. phycol. J., Vol. 4, pp. 159–80.Google Scholar
McLaughlin, J. J. A. & ZAHL, P. A., 1966. Endozoic Algae. In Symbiosis (ed. Henry, S. M.), Vol. I pp. 257–97. New York: Academic Press.Google Scholar
Oschman, J. L., 1966. Development of the symbiosis of Convoluta roscoffensis Graff and Platymonas sp. J. Phycol., Vol. 2, pp. 105–11.Google Scholar
Parke, M. & Manton, I., 1965. Preliminary observations on the fine structure of Prasinocladus marinus. J. mar. biol. Ass. U.K., Vol. 45, pp. 525–36.CrossRefGoogle Scholar
Parke, M. & Manton, I., 1967. The specific identity of the algal symbiont in Convoluta roscoffensis. J. mar. biol. Ass. U.K., Vol. 47, pp. 445–64.Google Scholar
Pederson, K. J., 1964. The cellular organization of Convoluta convoluta, an acoel turbellarian: A cytological, histochemical and fine structural study. Z. Zellforsch. mikrosk. Anat., Bd. 64, pp. 655–87.Google Scholar
Pringsheim, E. G., 1949. Pure Cultures of Algae. 119 pp. Cambridge University Press.Google Scholar
Provasoli, L., 1968. Media and the prospects for the cultivation of marine algae. In Cultures and Collections of Algae (eds. Watanabe, A. and Hattori, A.), Proc. U.S.-Japan Conf. Hakone Sept. 1966, pp. 6375. Japanese Society of Plant Physiologists.Google Scholar
Provasoli, L., Yamasu, T. & Manton, I., 1968. Experiments on the resynthesis of symbiosis in Convoluta roscoffensis with different flagellate cultures. J. mar. biol. Ass. U.K., Wol. 48, pp. 465–79.Google Scholar
Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol., Vol. 17, p. 208.CrossRefGoogle ScholarPubMed
Sarfatti, G. & Bedini, C., 1965. The symbiont alga of the flatworm Convoluta psammophila Bekl. observed at the electron microscope. Caryologia, Vol. 18, pp. 207–23.CrossRefGoogle Scholar
Taylor, D. L., 1968. In situ studies on the cytochemistry and ultrastructure of a symbiotic marine dinoflagellate. J. mar. biol. Ass. U.K., Vol. 48, pp. 349–66.Google Scholar
Taylor, D. L., 1969. Identity of zooxanthellae isolated from some Pacific Tridacnidae. J. Phycol., Vol. 5, pp. 336–40.Google Scholar
Taylor, D. L., 1971 a. Ultrastructure of the ‘zooxanthella’ Endodinium chattonii Hovasse in situ. J. mar. biol. Ass. U.K., Vol. 51, pp. 227–34.Google Scholar
Taylor, D. L., 1971 b. Taxonomy of some common Amphidinium species. Br. phycol. J. (in press).CrossRefGoogle Scholar
Welsh, M. F., 1936. Oxygen production by zooxanthellae in a Bermudan Turbellarian. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 70, pp. 282–7.CrossRefGoogle Scholar
Wood, E. J. F., 1969. Dinoflagellates of the Caribbean and Adjacent Areas, 120 pp. University of Miami Press.Google Scholar