Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T18:37:09.776Z Has data issue: false hasContentIssue false

On the Muscle Fibres and Locomotor Activity of Doliolids (Tunicata: Thaliacea) Q. Bone

Published online by Cambridge University Press:  11 May 2009

Q. Bone
Affiliation:
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB

Extract

Doliolids are pelagic tunicates which swim by very rapid contractions of the muscle bands that encircle their barrel-shaped bodies; the resulting jet pulses drive them forwards at instantaneous velocities up to 50 body lengths s-1 (Bone & Trueman, 1984). The obliquely-striated muscle fibres within the bands have the unique feature that they lack any kind of sarcoplasmic reticulum or sub-sarcolemmal vesicle system (Bone & Ryan, 1974). Most stages of the rather complex life-cycle of doliolids (Braconnot, 1971a) are small animals, less than 4 mm long; but in one of the species examined the largest may be up to 40 mm. This paper shows that external Ca2+ is required for contraction of the locomotor muscle fibres and that the decremental muscle potentials preceding contractions are carried by Ca2+. In younger stages, the muscle fibres within a band are electrically coupled to some extent, but in older animals, the degree of coupling decreases

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, P.A.V., Bone, Q., Mackie, G.O. & Singla, C.L., 1979. Epithelial conduction in salps. 11. The role of nervous and non-nervous conduction system interactions in the control of locomotion. Journal of Experimental Biology, 80, 241250.CrossRefGoogle Scholar
Bone, Q. & Mackie, G.O., 1977. Ciliary arrest potentials, locomotion and skin impulses in Doliolum (Tunicata: Thaliacea). Rivista di Biologia Normale e Patalogica, 3, 181191.Google Scholar
Bone, Q., Pulsford, A. & Chubb, A.D., 1981. Squid mantle muscle. journal of the Marine Biological Association of the United Kingdom, 61, 327342.CrossRefGoogle Scholar
Bone, Q. & Ryan, K.P., 1973. The structure and innervation of the locomotor muscles of salps (Tunicata: Thaliacea). Journal of the Marine Biological Association of the United Kingdom, 53, 873883.CrossRefGoogle Scholar
Bone, Q. & Ryan, K.P., 1974. On the structure and innervation of the muscle bands of Doliolum (Tunicata: Cyclomyaria). Proceedings of the Royal Society (B), 187, 315327.Google ScholarPubMed
Bone, Q. & Trueman, E.R., 1984. Jet propulsion in Doliolum (Tunicata: Thaliacea). Journal of Experimental Marine Biology and Ecology, 76, 105118.CrossRefGoogle Scholar
Braconnot, J.-C, 1971 a. Contribution a l'étude des stades successifs dans le cycle des Tuniciers pélagiques Doliolides. II. Les stades phorozoides et gonozoide des Doliolides. Archives de Zoologie Expérimentale et Générale, 112, 532.Google Scholar
Braconnot, J.-C, 1971 b. Contribution à l'étude biologique et ecologique des Tuniciers pelagiques Salpides et Doliolides. II. Ecologie des Doliolides, biologie des deux groupes. Vie et Milieu, 22, 437467.Google Scholar
Casanova, J.P., 1966. Pêches planctoniques superficielles et profondes en Méditerranée occidentale: VII-Thaliacés. Revue des Travaux. Institut des Pêches Maritimes, 30, 385390.Google Scholar
Denton, E.J. & Shaw, T.I., 1961. The buoyancy of gelatinous marine animals. Journal of Physiology, 161, 1415P.Google Scholar
Fedele, M., 1923. Attivita dinamiche e sistemo nervoso nella vita dei Dolioli. Pubblicazione della Stazione Zoologica di Napoli, 4, 129240.Google Scholar
Flood, P.R., 1977. The sarcoplasmic reticulum and associated plasma membrane of trunk muscle lamellae in Branchiostoma lanceolatum (Pallas). A transmission and scanning electron microscopic study including freeze-fractures, direct replicas and X-ray microanalysis of calcium oxalate deposits. Cell and Tissue Research, 181, 169196.CrossRefGoogle Scholar
Millman, B.M. & Bennett, P.M., 1976. Structure of the cross-striated adductor muscle of the scallop. Journal of Molecular Biology, 103, 439467.CrossRefGoogle ScholarPubMed
Miyazaki, S-i., Takahashi, K. & Tsuda, K., 1972. Calcium and sodium contributions to regenerative responses in the embryonic excitable cell membrane. Science, New York, 176, 14411443.Google Scholar
Nevitt, G. & Gilly, W.F., 1986. Morphological and physiological properties of non-striated muscle from the tunicate Ciona intestinalis: parallels with vertebrate striated muscle. Tissue and Cell, 18, 341360.CrossRefGoogle Scholar