Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T19:01:45.438Z Has data issue: false hasContentIssue false

On the Biology of Submarine Caves with Sulphur Springs: Appraisal of 13C/12C Ratios as a Guide to Trophic Relations

Published online by Cambridge University Press:  11 May 2009

A.J. Southward
Affiliation:
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB.
M.C. Kennicutt
Affiliation:
Geochemical and Environmental Research Group, Texas A&M University, 833 Graham Road, College Station, TX 77845, USA.
J. Herrera-Alcalà
Affiliation:
Geochemical and Environmental Research Group, Texas A&M University, 833 Graham Road, College Station, TX 77845, USA.
M. Abbiati
Affiliation:
Department of Environmental and Territorial Science, University of Pisa, Via A. Volta 5, 1–56125 Pisa, Italy.
L. Airoldi
Affiliation:
Department of Environmental and Territorial Science, University of Pisa, Via A. Volta 5, 1–56125 Pisa, Italy.
F. Cinelli
Affiliation:
Department of Environmental and Territorial Science, University of Pisa, Via A. Volta 5, 1–56125 Pisa, Italy.
C.N. Bianchi
Affiliation:
Marine Environment Research Centre, ENEA S. Teresa, CP 316, 1–19100 La Spezia, Italy.
C. Morri
Affiliation:
Institute of Zoology, University of Genoa, Via Balbi 5, 1–16126, Genova, Italy
E.C. Southward
Affiliation:
Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB.

Extract

Submarine caves with sulphurous springs at Cape Palinuro, Campania, Italy, have a richer fauna than expected from the known oligotrophic nature of the cave habitat. Warm water containing sulphide issues from springs and rises above the cooler ambient sea-water with a sharp thermocline/chemocline between. The warm water then escapes from the caves mixed with cooler sea-water, probably inducing an inflow of ambient sea-water. Bacterial mats, often dominated by large species of attached bacteria resembling Beggiatoa, line the upper parts of the inner caves and act as primary producers, fixing CO2 by means of the autotrophic enzyme ribulosebisphosphate carboxylase. Many of the animals in the innermost parts of the caves live close to the chemocline or just below, where they would experience fall-out of bacterial organic matter, and some carry filamentous bacteria on their tubes and hard parts. Dominant members of the community include sponges, cnidarians, and tubicolous polychaetes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbiati, M.L., Airoldi, L., Alvisi, M., Bianchi, C.N., Cinelli, F., Colantoni, P. & Morri, C., 1992. Preliminary observations on benthic communities in a submarine cave influenced by hydrothermal springs. Rapports et Procès-verbaux des Réunions. Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée. Monaco, 33, 25.Google Scholar
Abbiati, M., Airoldi, L., Castelli, A., Cinelli, F. & Southward, A.J., 1994. Preliminary observations on a dense population of Phyllochaetopterus socialis Claparède at the sulphurous water boundary in a Mediterranean submarine cave. Memoires du Muséum National d'Histoire Naturelle, 162, 323329.Google Scholar
Alvisi, M., 1991. Tecniche di rilevamento subacqueo. In Lezioni del corso formativo per ricercatore scientifico subacqueo (ed. M., Abbiati), pp. 1328. Pisa: Publications of the International School of Scientific Diving.Google Scholar
Alvisi, M., Barbieri, F., Bruni, R., Cinelli, F., Colantoni, P., Grandi, G.F. & Maltoni, P., 1994a. La Grotta Azzurra di Capo Palinuro (Salerno). Memorie dell'Istituto Italiano di Speleologia, series II, 6, 5156.Google Scholar
Alvisi, M., Barbieri, F. & Colantoni, P., 1994b. Le grotte marine di Capo Palinuro. Memorie dell'Istituto Italiano di Speleologia, series II, 6, 143181.Google Scholar
Balduzzi, A., Bianchi, C.N., Boero, F., Cattaneo Vietti, R., Pansini, M. & Sará, M., 1989. The suspension-feeder communities of a Mediterranean sea cave. Scientia Marina, 53, 387395.Google Scholar
Childress, J.J. & Fisher, C.R., 1992. The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanography and Marine Biology. Annual Review. London, 30, 337441.Google Scholar
Childress, et al., 1993. Inorganic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental pCO2. Nature, London, 362, 147149.CrossRefGoogle Scholar
Cinelli, F., Colantoni, P., Morri, C., Bianchi, C.N., Alvisi, M., Airoldi, L. & Abbiati, M., 1994. The biota of the ‘Grotta Azzurra’ of Cape Palinuro (Tyrrhenian Sea): general description and first observations on its trophic organization. Memorie dell'Istituto Italiano di Speleologia, series II, 6, 9597.Google Scholar
Cinelli, F., Fresi, E., Mazzella, L., Pansini, M., Pronzato, R. & Svoboda, A., 1977. Distribution of benthic phyto– and zoocoenoses along a light gradient in a superficial marine cave. In Biology of benthic organisms (ed. B.F., Keegan et al.), pp. 173183. Oxford: Pergamon Press.CrossRefGoogle Scholar
Conway, N., Capuzzo, J.M. & Fry, B., 1989. The role of endosymbiotic bacteria in the nutrition of Solemya velum: evidence from stable isotope analysis of endosymbionts and host. Limnology and Oceanography, 34, 249255.CrossRefGoogle Scholar
Dando, P.R.Southward, A.J. & Southward, E.C., 1986. Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proceedings of the Royal Society B, 227, 227247.Google Scholar
Dando, P.R., Southward, A.J., Southward, E.C., Terwilliger, N.B. & Terwilliger, R.C., 1985. Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Marine Ecology Progress Series, 23, 8598.CrossRefGoogle Scholar
Descolas-Gros, C. & Fontugne, M.R., 1985. Carbon fixation in marine phytoplankton: carboxylase activities and stable carbon-isotope ratios; physiological and paleoclimatological aspects. Marine Biology, 87, 16.CrossRefGoogle Scholar
Erséus, C., 1981. Taxonomy of the marine genus Thalassodrilides (Oligochaeta: Tubificidae). Transactions of the American Microscopical Society, 100, 333344.CrossRefGoogle Scholar
Fichez, R., 1990a. Decrease in allochthonous organic inputs in dark submarine caves, connection with lowering in benthic community richness. Hydrobiologia, 207, 6169.CrossRefGoogle Scholar
Fichez, R., 1990b. Absence of redox potential discontinuity in dark submarine cave sediments as evidence of oligotrophic conditions. Estuarine, Coastal and Shelf Science, 31, 875881.CrossRefGoogle Scholar
Fontugne, M.R. & Duplessy, J.-C., 1981. Organic carbon isotopic fractionation by marine plankton in the temperature range −1 to 31°C. Oceanologica Acta, 4, 8590.Google Scholar
Forti, P., 1985. Le mineralizzazioni della grotta di Cala Fetente (Salerno, Campania). Mondo Sotterraneo (New Series), A, 9, 4350.Google Scholar
Forti, P., 1989. The role of sulfide-sulfate reactions in speleogenesis. Proceedings of the Tenth International Speleological Congress, Budapest, 1, 7173.Google Scholar
Forti, P., 1993. Meccanismi genetici e evolutivi delle grotte marine. Speleologia, 28, 6367.Google Scholar
Fry, B. & Sherr, E.B., 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions in Marine Science. University of Texas, 27, 1347.Google Scholar
Grassle, J.F., 1986. The ecology of deep-sea hydrothermal vent communities. Advances in Marine Biology, 23, 301362.CrossRefGoogle Scholar
Harmelin, J.-G., 1969. Bryozoaires des grottes sous-marines obscures de la région marseillaise. Faunistique et Ecologie. Tethys, 1, 793806.Google Scholar
Harmelin, J.-G., Vacelet, J. & Vasseur, P., 1985. Les grottes sous-marines obscures: un milieu extreme et un remarquable biotope refuge. Tethys, 11, 214219.Google Scholar
Jannasch, H. W., Nelson, D.C. & Wirsen, C.O., 1989. Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site. Nature, London, 342, 834836.CrossRefGoogle Scholar
Kerby, N.W. & Raven, J.A., 1985. Transport and fixation of inorganic carbon by marine algae. Advances in Botanical Research, 11, 71123.CrossRefGoogle Scholar
Morri, C., Cinelli, F. & Bianchi, C.N., 1994. Sessile epifauna gigantism in a submarine cave with sulphur springs. Cave Diving, 6, 49.Google Scholar
Muscio, G., 1985. II fenomeno carsico dell'area Camerota – Palinuro (Salerno, Campania). Mondo Sotterraneo (New Series), A, 9, 1342.Google Scholar
Muscio, G. & Sello, U., 1989. Le richerche del circolo Speleologico e Idrologico Friulano nell'area di Capo Palinuro. Mondo Sotterraneo (New Series), A, 13, 4172.Google Scholar
Ott, J.A. & Svoboda, A., 1976. Sea caves as model systems for energy flow studies in primary hard bottom communities. Pubblicazioni della Stazione Zoologica di Napoli I, 40, 477485.Google Scholar
Pescatore, T., Piciochi, A., Vallario, A., Guida, M. & Iccarino, G., 1985. Lineamenti di geologia e di geologia tecnica del Cilento (Campania) con note di preistoria. In I parchi costieri Mediterranei, pp. 231257. Regione Campania, Assessorato per il Turismo, Ente Provinciale per il turismo di Salerno.Google Scholar
Reiswig, H.M., 1975. Bacteria as food for temperate-water marine sponges. Canadian Journal of Zoology, 53, 582589.CrossRefGoogle Scholar
Riedl, R., 1966. Biologie der Meereshohlen. Hamburg: Verlag Paul Parey.Google Scholar
Ruby, E.G., Jannasch, H.W. & Deuser, W.G., 1987. Fractionation of stable carbon isotopes during chemoautotrophic growth of sulphur-oxidizing bacteria. Applied and Environmental Microbiology, 53, 19401943.CrossRefGoogle Scholar
Sarbu, S. 1992. The biological investigation of a cave containing thermomineral waters. Cave Diving, 4, 49.Google Scholar
Schlichter, D., 1982. Nutritional strategies of cnidarians: the absorption, translocation and utilization of dissolved nutrients by Heteroxenia fuscescens. American Zoologist, 22, 659669.CrossRefGoogle Scholar
Southward, A.J., 1991. Effect of temperature on autotrophic enzyme activity of bacteria symbiotic in clams and tube worms. Kieler Meeresforschungen, Sonderhefte, 8, 245251.Google Scholar
Southward, A.J.Southward, E.C., Dando, P.R., Barrett, R.L. & Ling, R., 1986. Chemoautotrophic function of bacterial symbionts in small Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 66, 415437.CrossRefGoogle Scholar
Tunnicliffe, V., 1991. The biology of hydrothermal vents: ecology and evolution. Oceanography and Marine Biology. Annual Review. London, 29, 319407.Google Scholar
Vacelet, J., Boury-Esnault, N. & Harmelin, J.-G., 1994. Hexactinellid cave. A unique deep-sea habitat in the scuba zone. Deep-sea Research I, 41, 965973.CrossRefGoogle Scholar
Wong, W.W. & Sackett, W.M., 1978. Fractionation of stable carbon isotopes by marine phytoplankton. Geochimica et Cosmochimica Acta, 42, 18091815.CrossRefGoogle Scholar