Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T20:17:57.776Z Has data issue: false hasContentIssue false

Occurrence, composition and function of intracellular calcium phosphate granules in the musculature of nephtyid polychaetes (Annelida)

Published online by Cambridge University Press:  11 May 2009

G. W. Bryan
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB
P. E. Gibbs
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Introduction

Intracellular calcium granules rich in phosphorus are found throughout the animal kingdom and occur in a wide range of different tissues (Simkiss, 1976; Mason & Nott, 1981). However, few examples of the natural occurrence of such granules in muscle cells have been recorded and thus the discovery of abundant granules composed of calcium phosphate within the muscle fibres of the polychaete Nephtys, described by Gibbs & Bryan (1984), is of considerable interest, particularly regarding the formation and function of these unusual sarcoplasmic inclusions.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alohan, F. I. & Huddart, H., 1981. Localization of calcium in an annelid visceral muscle by pyroantimonate deposition and by X-ray microprobe analysis. Tissue and Cell, 13, 525534.CrossRefGoogle Scholar
Anderson, M., 1982. Striated myoepithelial cells. In Basic Biology of Muscles: A Comparative Approach (ed. Twarog, B. M., Levine, R. J. C. and Dewey, M. M.), pp. 309322. New York: Raven Press.Google Scholar
Briggs, R. T., Chaffee, J. & Anderson, M., 1985. Calcium-containing granules in myoepithelial cells of the polychaete Syllis spongiphila: possible ionic modulators. Tissue and Cell, 17, 923928.CrossRefGoogle ScholarPubMed
Brighton, C. T. & Hunt, R. M., 1978. The role of mitochondria in growth plate calcification as demonstrated in a rachitic model. Journal of Bone and Joint Surgery, 60A, 630639.CrossRefGoogle Scholar
Brown, B. E., 1982. The form and function of metal-containing ‘granules’ in invertebrate tissues. Biological Reviews, 57, 621667.CrossRefGoogle Scholar
Bryan, G. W. & Gibbs, P. E., 1983. Heavy metals in the Fal Estuary, Cornwall: a study of long-term contamination by mining waste and its effects on estuarine organisms. Occasional Publications. Marine Biological Association of the United Kingdom, no. 2, 112 pp.Google Scholar
Claparéde, E., 1868. Les annélides chétopodes du Golfe de Naples. Mémoires de la Société de physique et d'histoire naturelle de Genéve, 19, 313570.Google Scholar
Clark, M. E. & Clark, R. B., 1962. Growth and regeneration in Nephtys. Zoologische Jahrbücher (abteilung für Allgemeine Zoologie und Physiologie der Tiere), 70, 2490.Google Scholar
Clark, R. B. & Clark, M. E., 1960. The ligamentary system and the segmental musculature of Nephtys. Quarterly Journal of Microscopical Science, 101, 149176.Google Scholar
Dietrich, H. F. & Fontaine, A. R., 1975. A decalcification method for ultrastructure of echinoderm tissues. Stain Technology, 50, 351354.CrossRefGoogle ScholarPubMed
Doyle, L. J., Blake, N. J., Woo, C. C. & Yevich, P., 1978. Recent biogenic phosphorite: concretions in mollusk kidneys. Science, New York, 199, 14311433.CrossRefGoogle ScholarPubMed
Emery, C., 1886. Intorno alla muscolatura liscia e striata della Nephthys scolopendroides D.Ch. Mitteilungen aus der Zoologischen Station zu Neapel, 7, 371380.Google Scholar
Fauchald, K., 1977. The polychaete worms. Definitions and keys to the orders, families and genera. Science Series. Natural History Museum of Los Angeles County, no. 28, 190 pp.Google Scholar
Fletcher, C. R., 1970, The regulation of calcium and magnesium in the brackish water polychaete Nereis diversicolor O.F.M. Journal of Experimental Biology, 53, 425443.CrossRefGoogle Scholar
Freel, R. W., Medler, S. G. & Clark, M. E., 1973. Solute adjustments in the coelomic fluid and muscle fibers of a euryhaline polychaete, Neanthes succinea, adapted to various salinities. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 144, 289303.CrossRefGoogle Scholar
Gibbs, P. E., 1969. A quantitative study of the polychaete fauna of certain fine deposits in Plymouth Sound. Journal of the Marine Biological Association of the United Kingdom, 49, 311326.CrossRefGoogle Scholar
Gibbs, P. E. & Bryan, G. W., 1984. Calcium phosphate granules in muscle cells of Nephtys (Annelida, Polychaeta) – a novel skeleton? Nature, London, 310, 494495.CrossRefGoogle ScholarPubMed
Haswell, W. A., 1890. A comparative study of striated muscle. Quarterly Journal of Microscopical Science, 30, 3150.Google Scholar
Haswell, W. A., 1921. The proboscis of the Syllidea. Part 1. Structure. Quarterly Journal of Microscopical Science, 65, 323337.Google Scholar
Her Majesty's Stationery Office, 1981. Phosphorus in Waters, Effluents and Sewages, 1980. London. [Methods for the Examination of Waters and Associated Materials.]Google Scholar
Kryvi, H., 1974. On the myofilament arrangement in obliquely striated muscle cells of Sabella penicillum (Polychaeta). Norwegian Journal of Zoology, 22, 6769.Google Scholar
Leersnyder, M. De & Glacon, R., 1973. Sur la regulation osmotique et ionique de quelques Nephthyides. Cahiers de biologie marine, 14, 329333.Google Scholar
Legato, M., Spiro, D. & Langer, G. A., 1968. Ultrastructural alterations produced in mammalian myocardium by variation in perfusate ionic composition. Journal of Cell Biology, 37, 112.CrossRefGoogle ScholarPubMed
Legeros, R. Z., Trautz, O. R., Legeros, J. P. & Klein, E., 1966. Apatite crystallites: effects of carbonate on morphology. Science, New York, 155, 14091411.CrossRefGoogle Scholar
Lehninger, A. L., 1970. Mitochondria and calcium ion transport. Biochemical Journal, 119, 129138.CrossRefGoogle ScholarPubMed
Lehninger, A. L., 1983. The possible role of mitochondria and phosphocitrate in biological calcification. In Biomineralization and Biological Metal Accumulation: Biological and Geo-logical Perspectives (ed. Westbroek, P. and de Jong, E. W.), pp. 107121. Dortrecht: D. Reidel Publishing Co.CrossRefGoogle Scholar
Mason, A. Z. & Nott, J. A., 1981. The role of intracellular biomineralized granules in the regulation and detoxification of metals in gastropods with special reference to the marine prosobranch Littorina littorea. Aquatic Toxicology, 1, 239256.CrossRefGoogle Scholar
Mettam, C.J 1967. Segmental musculature and parapodial movement of Nereis diversicolor and Nephthys hombergi (Annelida: Polychaeta). Journal of Zoology, 153, 245275.CrossRefGoogle Scholar
Peachey, L. D., 1964. Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules. Journal of Cell Biology, 20, 95111.CrossRefGoogle ScholarPubMed
Ponsolle, L., Wissocq, J.-C. & Galle, P., 1974. Étude des inclusions microcrystallines dans le proventricule des Syllidiens (Annelida Polychaeta). Cytobiologie, 9, 169179.Google Scholar
Rosenbluth, J., 1968. Obliquely striated muscle. IV. Sarcoplasmic reticulum, contractile apparatus and endomysium of the body muscle of a polychaete, Glycera, in relation to its speed. Journal of Cell Biology, 36, 245259.CrossRefGoogle ScholarPubMed
Simkiss, K., 1976. Intracellular and extracellular routes in biomineralization. Symposia of the Society for Experimental Biology, no. 30, 423444.Google Scholar
Smith, D. S., Del, Castillo J. & Anderson, M., 1973. Fine structure and innervation of an annelid muscle with the longest recorded sarcomere. Tissue and Cell, 5, 281302.CrossRefGoogle ScholarPubMed
Thomas, R. S. & Greenawalt, J. W., 1968. Microincineration, electron microscopy and electron diffraction of calcium phosphate-loaded mitochondria. Journal of Cell Biology, 39, 5567.CrossRefGoogle ScholarPubMed
Trevor, J. H., 1976. The burrowing activity of Nephtys cirrosa Ehlers (Annelida: Polychaeta). Journal of Experimental Marine Biology and Ecology, 24, 307319.CrossRefGoogle Scholar
Trevor, J. H., 1978. The dynamics and mechanical energy expenditure of the polychaetes Nephtys cirrosa, Nereis diversicolor and Arenicola marina during burrowing. Estuarine and Coastal Marine Science, 6, 605619.CrossRefGoogle Scholar
Voss-Foucart, M.-F., Fonze-Vignaux, M.-T. & Jeuniaux, C., 1973. Systematic characters of some polychaetes (Annelida) at the level of the chemical composition of the jaws. Biochemical Systematics, 1, 119122.CrossRefGoogle Scholar
Weinbach, E. C. & Von Brand, T., 1965. The isolation and composition of dense granules from Ca2+-loaded mitochondria. Biochemical and Biophysical Research Communications, 19, 133137.CrossRefGoogle Scholar