Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T04:48:24.484Z Has data issue: false hasContentIssue false

The nose of the sperm whale: overviews of functional design, structural homologies and evolution

Published online by Cambridge University Press:  10 October 2014

Stefan Huggenberger*
Affiliation:
Biocentre, University of Cologne, 50923 Cologne, Germany Department of Anatomy II, University of Cologne, 50924 Cologne, Germany
Michel André
Affiliation:
Laboratori d'Aplicacions Bioacústiques, Universitat Politècnica de Catalunya, Centre Tecnològic de Vilanova i la Geltrú, Avenida.Rambla Exposició, s/n, 08800 Vilanova i la Geltrú, Barcelona, Spain
Helmut H. A. Oelschläger
Affiliation:
Department of Anatomy III (Dr Senckenbergische Anatomie), Johann Wolfgang Goethe University of Frankfurt am Main, 60590 Frankfurt am Main, Germany
*
Correspondence should be addressed to:S. Huggenberger, Department II of Anatomy, University of Cologne, 50924 Cologne, Germany email: [email protected]

Abstract

The hypertrophic and much elongated epicranial (nasal) complex of sperm whales (Physeter macrocephalus) is a unique device to increase directionality and source levels of echolocation clicks in aquatic environments. The size and shape of the nasal fat bodies as well as the peculiar organization of the air sac system in the nasal sound generator of sperm whales are in favour of this proposed specialized acoustic function. The morphology of the sperm whale nose, including a ‘connecting acoustic window’ in the case and an anterior ‘terminal acoustic window’ at the rostroventral edge of the junk, supports the ‘bent horn hypothesis’ of sound emission. In contrast to the laryngeal mechanism described for dolphins and porpoises, sperm whales may drive the initial pulse generation process with air pressurized by nasal muscles associated with the right nasal passage (right nasal passage muscle, maxillonasolabialis muscle). This can be interpreted as an adaptation to deep-diving and high hydrostatic pressures constraining pneumatic phonation. Comparison of nasal structures in sperm whales and other toothed whales reveals that the existing air sac system as well as the fat bodies and the musculature have the same topographical relations and thus may be homologous in all toothed whales (Odontoceti). This implies that the nasal sound generating system evolved only once during toothed whale evolution and, more specifically, that the unique hypertrophied nasal complex was a main driving force in the evolution of the sperm whale taxon.

Type
Review Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarkov, G.B., Khomenko, B.G. and Manger, A.P. (1979) Functional morphology of cetaceans. (Cited after Solntseva and Rodionov, 2012). Kiev: Naukova Dumka.Google Scholar
Amundin, M. and Andersen, S.H. (1983) Bony nares air pressure and nasal plug muscle activity during click production in the harbour porpoise, Phocoena phocoena, and the bottlenosed dolphin, Tursiops truncatus. Journal of Experimental Biology 105, 275282.Google Scholar
André, M. (2009) The sperm whale sonar: monitoring and use in mitigation of anthropogenic noise effects in the marine environment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 602, 262267.Google Scholar
André, M., Johansson, T., Delory, E. and van der Schaar, M. (2007) Foraging on squid: the sperm whale mid-range sonar. Journal of the Marine Biological Association of the United Kingdom 87, 5967.Google Scholar
Anthro Media (2008) Pottwal Ahoi! Mit Moby Dick auf Tiefseetauchgang. Television documentary, ARTE, 2 September 2008.Google Scholar
Antunes, R., Rendell, L. and Gordon, J. (2010) Measuring inter-pulse intervals in sperm whale clicks: consistency of automatic estimation methods. Journal of the Acoustical Society of America 127, 32393247.Google Scholar
Au, W.W.L., Kastelein, R.A., Benoit-Bird, K.J., Cranford, T.W. and McKenna, M.F. (2006) Acoustic radiation from the head of echolocating harbor porpoises (Phocoena phocoena). Journal of Experimental Biology 209, 27262733.Google Scholar
Barnes, L.G., Domning, D.P. and Ray, C.E. (1985) Status of studies on fossil marine mammals. Marine Mammal Science 1, 1553.Google Scholar
Beedholm, K. and Møhl, B. (2006) Directionality of sperm whale sonar clicks and its relation to piston radiation theory. Journal of the Acoustical Society of America 119, EL14EL19.Google Scholar
Behrmann, G. and Klima, M. (1985) Cartilaginous structures in the forehead of the sperm whale Physeter macrocephalus. Zeitschrift für Säugetierkunde 50, 347356.Google Scholar
Berta, A. and Sumich, J.L. (1999) Marine mammals: evolutionary biology. San Diego, CA: Academic Press.Google Scholar
Berzin, A.A. (1972) The sperm whale. Jerusalem: Israel Program for Scientific Translations (available from the U.S. Dept. of Commerce, National Technical Information Service, Springfield, VA).Google Scholar
Boenninghaus, G. (1903) Der Rachen von Phocaena communis Less. Eine biologische Studie. Zoologische Jahrbücher 17, 198.Google Scholar
Britannica Online Encyclopedia (2013) Phytosaur (reptile suborder), available at: http://www.britannica.com/EBchecked/topic/458968/phytosaur.Google Scholar
Buhl, E.H. and Oelschläger, H.A. (1986) Ontogenetic development of the nervus terminalis in toothed whales. Evidence for its non-olfactory nature. Anatomy and Embryology 173, 285294.Google Scholar
Carrier, D.R., Deban, S.M. and Otterstrom, J. (2002) The face that sank the Essex: potential function of the spermaceti organ in aggression. Journal of Experimental Biology 205, 17551763.Google Scholar
Clarke, M.R. (1970) Function of the spermaceti organ of the sperm whale. Nature 228, 873874.Google Scholar
Clarke, M.R. (1978a) Buoyancy control as a function of the spermaceti organ in the sperm whale. Journal of the Marine Biological Association of the United Kingdom 58, 2771.Google Scholar
Clarke, M.R. (1978b) Structure and proportions of the spermaceti organ in the sperm whale. Journal of the Marine Biological Association of the United Kingdom 58, 117.Google Scholar
Clarke, M.R. (2003) Production and control of sound by the small sperm whales, Kogia breviceps and K. sima and their implications for other Cetacea. Journal of the Marine Biological Association of the United Kingdom 83, 241263.Google Scholar
Clifford, A.B. and Witmer, L.M. (2004) Case studies in novel narial anatomy: 3. Structure and function of the nasal cavity of saiga (Artiodactyla: Bovidae: Saiga tatarica). Journal of Zoology 264, 217230.Google Scholar
Cranford, T.W. (1988) The anatomy of acoustic structures in the spinner dolphin forehead as shown by x-ray computed tomography and computer graphics. In Nachtigall, P.E. and Moor, P.W.B. (eds) Animal sonar: processes and performance. Nato ASI Series A. New York, NY: Plenum Press, pp. 6777.Google Scholar
Cranford, T.W. (1999) The sperm whale's nose: sexual selection on a grand scale. Marine Mammal Science 15, 11331157.Google Scholar
Cranford, T.W. (2000) In search of impulse sound sources in odontocetes. In Au, W.W.L., Popper, A.N. and Fay, R.R. (eds) Hearing by whales and dolphins. New York, NY: Springer, pp. 109155.Google Scholar
Cranford, T.W. (2013) Unique Whale Science Images. Welcome to Whale Science, available at: http://www.spermwhale.org/.Google Scholar
Cranford, T.W. and Amundin, M. (2004) Biosonar pulse production in odontocetes: the state of our knowledge. In Thomas, J.A., Moss, C.F. and Vater, M. (eds) Echolocation in bats and dolphins. Chicago, IL: University of Chicago Press, pp. 2735.Google Scholar
Cranford, T.W., Amundin, M. and Norris, K.S. (1996) Functional morphology and homology in the odontocete nasal complex: implications for sound generation. Journal of Morphology 228, 223285.Google Scholar
Cranford, T.W., Elsberry, W.R., Blackwood, D.J., Carr, J.A., Kamolnick, T., Todd, M., Bonn, W.G.V., Carder, D.A., Ridgway, S.H., Bozlinski, D.M. and Decker, E.C. (2000) Two independent sonar signal generators in the bottlenose dolphin: physiologic evidence and implications. Journal of the Acoustical Society of America 108, 26132614.Google Scholar
Cranford, T.W., Elsberry, W.R., Van Bonn, W.G., Jeffress, J.A., Chaplin, M.S., Blackwood, D.J., Carder, D.A., Kamolnick, T., Todd, M.A. and Ridgway, S.H. (2011) Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): evidence for two sonar sources. Journal of Experimental Marine Biology and Ecology 407, 8196.Google Scholar
Curry, B.E. (1992) Facial anatomy and potential function of facial structures for sound production in the harbor porpoise (Phocoena phocoena) and Dall's porpoise (Phocoenoides dalli). Canadian Journal of Zoology 70, 21032114.Google Scholar
Dubrovsky, N., Gladilin, A., Møhl, B. and Wahlberg, M. (2004) Modeling of the dolphin's clicking sound source: the influence of the critical parameters. Acoustical Physics 50, 463468.Google Scholar
Duguy, R. (1995a) Kogia breviceps (de Blainville, 1838) – Zwergpottwal. In Robineau, D., Duguy, R. and Klima, M. (eds) Meeressäuger – Wale und Delphine 2. Handbuch der Säuetiere Europas. Wiesbaden: Aula, pp. 598614.Google Scholar
Duguy, R. (1995b) Kogia simus (Owen, 1866) – Kleinpottwal. In Robineau, D., Duguy, R. and Klima, M. (eds) Meeressäuger – Wale und Delphine 2. Handbuch der Säuetiere Europas. Wiesbaden: Aula, pp. 615623.Google Scholar
Ellis, R. (1996) The book of whales. New York, NY: Alfred A. Knopf.Google Scholar
Fahlke, J.M., Gingerich, P.D., Welsh, R.C. and Wood, A.R. (2011) Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water. Proceedings of the National Academy of Sciences USA 108, 1454514548.Google Scholar
Flewellen, C.G. and Morris, R.J. (1978) Sound velocity measurements on samples from the spermaceti organ of the sperm whale (Physeter catodon). Deep Sea Research 25, 269277.Google Scholar
Flower, W.H. (1867) On the osteology of the cachalot or sperm whale (Physeter macrocephalus). Transactions of the Zoological Society London 6, 309372.Google Scholar
Fordyce, R.E. (2009a) Cetacean evolution. In Perrin, W.F., Würsig, B. and Thewissen, J.G.M. (eds) Encyclopedia of marine mammals. San Diego, CA: Academic Press, pp. 201207.Google Scholar
Fordyce, R.E. (2009b) Cetacean fossil record. In Perrin, W.F., Würsig, B. and Thewissen, J.G.M. (eds) Encyclopedia of marine mammals. San Diego, CA: Academic Press, pp. 207215.Google Scholar
Fordyce, R.E. and de Muizon, C. (2001) Evolutionary history of the cetaceans: a review. In Mazin, J.M. and de Buffrénil, V. (eds) Secondary adaptation of tetrapods to life in water. Munich: Dr Friedrich Pfeil, pp. 169234.Google Scholar
Frey, R., Volodin, I. and Volodina, E. (2007) A nose that roars: anatomical specializations and behavioural features of rutting male saiga. Journal of Anatomy 211, 717736.Google Scholar
Gambell, R. (1995) Physeter catodon Linnaeus, 1758 – Pottwal. In Robineau, D., Duguy, R. and Klima, M. (eds) Meeressäuger – Wale und Delphine 2. Handbuch der Säuetiere Europas. Wiesbaden: Aula, pp. 625646.Google Scholar
Geisler, J.H., Colbert, M.W. and Carew, J.L. (2014) A new fossil species supports an early origin for toothed whale echolocation. Nature 508, 383386.Google Scholar
Gingerich, P.D., ul Haq, M., Zalmout, I.S., Khan, I.H. and Malkani, M.S. (2001) Origin of whales from early artiodactyls: hands and feet of eocene Protocetidae from Pakistan. Science 293, 22392242.Google Scholar
Goold, J.C. (1999) Behavioural and acoustic observations of sperm whales in Scapa Flow, Orkney Islands. Journal of the Marine Biological Association of the United Kingdom 79, 541550.Google Scholar
Goold, J.C., Bennell, J.D. and Jones, S.E. (1996) Sound velocity measurements in spermaceti oil under the combined influences of temperature and pressure. Deep Sea Research Part I: Oceanographic Research Papers 43, 961969.Google Scholar
Gordon, J.C.D. (1987) Sperm whale groups and social behaviour observed off Sri Lanka. Reports of the International Whaling Commission 37, 205217.Google Scholar
Heyning, J.E. (1989) Comparative facial anatomy of beaked whales (Ziphiidae) and a systematic revision among the families of extant Odontoceti. Contributions in Science 405, 164.Google Scholar
Heyning, J.E. and Mead, J.G. (1990) Evolution of the nasal anatomy of cetaceans. In Thomas, J.A. and Kastelein, R.A. (eds) Sensory abilities of cetaceans. New York, NY: Plenum Press, pp. 6779.Google Scholar
Huber, E. (1934) Contribution to palaeontology IV: anatomical notes on pinnipedia and cetacea. Publication of the Carnegie Institution Washington 447, 105136.Google Scholar
Huggenberger, S. (2004) Functional morphology, development, and evolution of the upper respiratory tract in toothed whales (Odontoceti). Doctoral dissertation. Department of Biology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.Google Scholar
Huggenberger, S., Ridgway, S.H., Oelschläger, H.H.A., Kirschenbauer, I., Vogl, T.J. and Klima, M. (2006) Histological analysis of the nasal roof cartilage in a neonate sperm whale (Physeter macrocephalus – Mammalia, Odontoceti). Zoologischer Anzeiger 244, 229238.Google Scholar
Huggenberger, S., Rauschmann, M.A. and Oelschläger, H.H.A. (2008) Functional morphology of the hyolaryngeal complex of the harbor porpoise (Phocoena phocoena): implications for its role in sound production and respiration. Anatomical Record 291, 12621270.Google Scholar
Huggenberger, S., Rauschmann, M.A., Vogl, T.J. and Oelschläger, H.H.A. (2009) Functional morphology of the nasal complex in the harbor porpoise (Phocoena phocoena L.). Anatomical Record 292, 902920.Google Scholar
Huggenberger, S., André, M. and Oelschläger, H.H.A. (2014) An acoustic valve within the nose of sperm whales Physeter macrocephalus. Mammal Review 44, 8187.Google Scholar
Jaquet, N., Dawson, S. and Douglas, L. (2001) Vocal behavior of male sperm whales: why do they click? Journal of the Acoustical Society of America 109, 22542259.Google Scholar
Kishida, T., Kubota, S., Shirayama, Y. and Fukami, H. (2007) The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biology Letters 3, 428430.Google Scholar
Klima, M. (1987) Morphogenesis of the nasal structures of the skull in toothed whales (Odontoceti). In Kuhn, H.J. and Zeller, U. (eds) Morphogenesis of the mammalian skull. Hamburg: Paul Parey, pp. 105122.Google Scholar
Klima, M. (1990) Histologische Untersuchungen an Knorpelstrukturen im Vorderkopf des Pottwals Physeter macrocephalus. Gegenbaurs Morphologisches Jahrbuch 136, 116.Google Scholar
Klima, M. (1995) Cetacean phylogeny and systematics based on the morphogenesis of the nasal skull. Aquatic Mammals 21, 7989.Google Scholar
Klima, M. (1999) Development of the cetacean nasal skull. Advances in Anatomy, Embryology, and Cell Biology 149, 1143.Google Scholar
Klima, M., Seel, M. and Deimer, P. (1986a) Die Entwicklung des hochspezialisierten Nasenschädels beim Pottwal (Physeter macrocephalus). Teil I. Gegenbaurs Morphologisches Jahrbuch 132, 245285.Google Scholar
Klima, M., Seel, M. and Deimer, P. (1986b) Die Entwicklung des hochspezialisierten Nasenschädels beim Pottwal (Physeter macrocephalus). Teil II. Gegenbaurs Morphologisches Jahrbuch 132, 349374.Google Scholar
Kükenthal, W. (1893) Vergleichend-anatomische und entwicklungsgeschichtliche Untersuchungen an Walthieren. Denkschriften der Medicinisch-Naturwissenschftlichen Gesellschaft zu Jena 3, 1447.Google Scholar
Lawrence, B. and Schevill, W.E. (1956) The functional anatomy of the delphinid nose. Bulletin of the Museum of Comparative Zoology 114, 103151.Google Scholar
Lusseau, D. (2003) The emergence of cetaceans: phylogenetic analysis of male social behaviour supports the Cetartiodactyla clade. Journal of Evolutionary Biology 16, 531535.Google Scholar
MacLeod, C.D., Reidenberg, J.S., Weller, M., Santos, M.B., Herman, J., Goold, J. and Pierce, G.J. (2007) Breaking symmetry: the marine environment, prey size, and the evolution of asymmetry in cetacean skulls. Anatomical Record 290, 539545.Google Scholar
Madsen, P.T. (2002) Sperm whale sound production. Doctoral dissertation. Department of Biology, University of Aarhus, Aarhus, Denmark.Google Scholar
Madsen, P.T. and Surlykke, A. (2013) Functional convergence in bat and toothed whale biosonars. Physiology 28, 276283.CrossRefGoogle ScholarPubMed
Madsen, P.T., Payne, R., Kristiansen, N.U., Wahlberg, M., Kerr, I. and Møhl, B. (2002a) Sperm whale sound production studied with ultrasound time/depth-recording tags. Journal of Experimental Biology 205, 18991906.Google Scholar
Madsen, P.T., Wahlberg, M. and Møhl, B. (2002b) Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: implications for echolocation and communication. Behavioral Ecology and Sociobiology 53, 3141.Google Scholar
Madsen, P.T., Carder, D.A., Au, W.W.L., Nachtigall, P.E., Møhl, B. and Ridgway, S.H. (2003) Sound production in neonate sperm whales (L). Journal of the Acoustical Society of America 113, 29882991.Google Scholar
Madsen, P.T., Wisniewska, D. and Beedholm, K. (2010) Single source sound production and dynamic beam formation in echolocating harbour porpoises (Phocoena phocoena). Journal of Experimental Biology 213, 31053110.Google Scholar
Madsen, P.T., Lammers, M., Wisniewska, D. and Beedholm, K. (2013) Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side. Journal of Experimental Biology 216, 40914102.Google Scholar
Malins, D.C. and Varanasi, U. (1975) The biochemistry of lipids in acoustic tissues. In Malins, D.C. and Sargent, J.R. (eds) Biochemical and biophysical perspectives in marine biology. New York, NY: Academic Press, pp. 237290.Google Scholar
Marcoux, M., Whitehead, H. and Rendell, L. (2006) Coda vocalizations recorded in breeding areas are almost entirely produced by mature female sperm whales (Physeter macrocephalus). Canadian Journal of Zoology 84, 609614.Google Scholar
Martin, A.R. (1991) Das große Bestimmungsbuch der Wale und Delphine. München: Mosaik.Google Scholar
Mathias, D., Thode, A., Straley, J. and Folkert, K. (2009) Relationship between sperm whale (Physeter macrocephalus) click structure and size derived from videocamera images of a depredating whale (sperm whale prey acquisition). Journal of the Acoustical Society of America 125, 34443453.Google Scholar
Mazin, J.M. (2001) Mesozoic marine reptiles: an overview. In Mazin, J.M. and de Buffrénil, V. (eds) Secondary adaptation of tetrapods to life in water. Munich: Dr Friedrich Pfeil, pp. 95117.Google Scholar
Mead, J.G. (1972) Anatomy of the external nasal passages and facial complex in the Delphinidae (Mammalia, Cetacea) (cited after Cranford et al., 1996). Doctoral dissertation. Department of Biology, University of Chicago, IL, USA.Google Scholar
Mead, J.G. (1975) Anatomy of the external nasal passages and facial complex in the Delphinidae (Mammalia, Cetacea). Smithsonian Contributions to Zoology 207, 172.Google Scholar
Mead, J.G. and Fordyce, R.E. (2009) The therian skull: a lexicon with emphasis on the odontocetes. Smithsonian Contributions to Zoology 627, 1216.Google Scholar
Milinkovitch, M.C. (1995) Molecular phylogeny of cetaceans prompts revision of morphological transformations. Trends in Ecology and Evolution 10, 328334.Google Scholar
Miller, G.S. (1923) The telescoping of the cetacean skull. Smithsonian Miscellaneous Collections 76, 171.Google Scholar
Møhl, B. (2001) Sound transmission in the nose of the sperm whale Physeter catodon. A post mortem study. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 187, 335340.Google Scholar
Møhl, B., Wahlberg, M., Madsen, P.T., Miller, L.A. and Surlykke, A. (2000) Sperm whale clicks: directionality and source level revisited. Journal of the Acoustical Society of America 107, 638648.Google Scholar
Møhl, B., Madsen, P.T., Wahlberg, M., Au, W.W.L., Nachtigall, P.E. and Ridgway, S.H. (2003a) Sound transmission in the spermaceti complex of a recently expired sperm whale calf. Acoustics Research Letters Online 4, 1924.Google Scholar
Møhl, B., Wahlberg, M., Madsen, P.T., Heerfordt, A. and Lund, A. (2003b) The monopulsed nature of sperm whale clicks. Journal of the Acoustical Society of America 114, 11431154.Google Scholar
Moris, F. (1969) Etude anatomique de la region cephalique du marsouin, Phocaena phocaena L. (Cetacee, Odontocete). Mammalia 33, 666705.Google Scholar
Morris, R.J. (1986) The acoustic faculty of dolphins. In Bryden, M.M. and Harrison, R.J. (eds) Research on dolphins. New York, NY: Clarendon Press, pp. 369399.Google Scholar
Murie, J. (1874) On the organization of the caaing whale, Globiocephalus melas. Transactions of the Zoological Society of London 8, 235301.Google Scholar
Nakamura, G., Zenitani, R. and Kato, H. (2013) Relative skull growth of the sperm whale, Physeter macrocephalus, with a note of sexual dimorphism. Mammal Study 38, 177186.Google Scholar
Ness, A.R. (1967) A measure of asymmetry of the skulls of odontocete whales. Journal of Zoology 153, 209221.Google Scholar
Nishiwaki, M., Ohsumi, S. and Maeda, Y. (1963) Change of form in the sperm whale accompanied with growth. Scientific Reports of the Whales Research Institute Tokyo 17, 117.Google Scholar
Norris, K.S. (1980) Peripheral sound processing in odontocetes. In Busnel, R.G. and Fish, J.F. (eds) Animal sonar systems. New York, NY: Plenum Press, pp. 495509.Google Scholar
Norris, K.S. and Harvey, G.W. (1972) A theory of the function of the spermaceti organ of the sperm whale (Physeter catodon). In Galler, S.R., Schmidt-Koenig, K., Jacobs, G.J. and Belleville, R.E. (eds) Animal orientation and navigation. NASA Special Publication. Washington, DC: Scientific and Technical Information Office, National Aeronautics and Space Administration (NASA), pp. 397417.Google Scholar
Norris, K.S. and Harvey, G.W. (1974) Sound transmission in the porpoise head. Journal of the Acoustical Society of America 56, 659664.Google Scholar
Norris, K.S. and Møhl, B. (1983) Can odontocetes debilitate prey with sound? American Naturalist 122, 85104.Google Scholar
Norris, K.S., Dormer, K.J., Pegg, J. and Liese, G.J. (1971) The mechanisms of sound production and air recycling in porpoises: a preliminary report. In Proceedings of the 8th Annual Conference on Biological Sonar and Diving Mammals. Menlo Park, CA: Stanford Research Institute.Google Scholar
Oelschläger, H.A. (1990) Evolutionary morphology and acoustics in the dolphin skull. In Thomas, J.A. and Kastelein, R.A. (eds) Sensory abilities of cetaceans: laboratory and field evidence. New York, NY: Plenum Press, pp. 137162.Google Scholar
Oelschläger, H.H.A. (2008) The dolphin brain – a challenge for synthetic neurobiology. Brain Research Bulletin 75, 450459.Google Scholar
Oelschläger, H.A. and Buhl, E.H. (1985a) Development and rudimentation of the peripheral olfactory system in the harbor porpoise Phocoena phocoena (Mammalia: Cetacea). Journal of Morphology 184, 351360.Google Scholar
Oelschläger, H.A. and Buhl, E.H. (1985b) Occurrence of an olfactory-bulb in the early development of the harbor porpoise (Phocoena phocoena L.). Fortschritte der Zoologie 30, 695698.Google Scholar
Oelschläger, H.H.A. and Kemp, B. (1998) Ontogenesis of the sperm whale brain. Journal of Comparative Neurology 399, 210228.Google Scholar
Oelschläger, H.H.A. and Oelschläger, J.S. (2002) Brain. In Perrin, W.F., Würsig, B. and Thewissen, J.G.M. (eds) Encyclopedia of marine mammals. San Diego, CA: Academic Press, pp. 133158.Google Scholar
Oelschläger, H.H.A. and Oelschläger, J.S. (2009) Brain. In Perrin, W.F., Würsig, B. and Thewissen, J.G.M. (eds) Encyclopedia of marine mammals. San Diego, CA: Academic Press, pp. 134149.Google Scholar
Oelschläger, H.H.A., Ridgway, S.H. and Knauth, M. (2010) Cetacean brain evolution: dwarf sperm whale (Kogia sima) and common dolphin (Delphinus delphis) – an investigation with high-resolution 3D MRI. Brain, Behavior and Evolution 75, 3362.Google Scholar
Oliveira, C., Wahlberg, M., Johnson, M., Miller, P.J.O. and Madsen, P.T. (2013) The function of male sperm whale slow clicks in a high latitude habitat: communication, echolocation, or prey debilitation? Journal of the Acoustical Society of America 133, 31353144.Google Scholar
Papastavrou, V., Smith, S.C. and Whitehead, H. (1989) Diving behaviour of the sperm whale, Physeter macrocephalus, off the Galapagos Islands. Canadian Journal of Zoology 67, 839846.Google Scholar
Pouchet, G. and Beauregard, H. (1885) Note sur “l'organe des spermaceti”. Comptes Rendus de la Société de Biologie Paris 8, 342344.Google Scholar
Price, S.A., Bininda-Emonds, O.R.P. and Gittleman, J.L. (2005) A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biological Reviews of the Cambridge Philosophical Society 80, 445473.Google Scholar
Purves, P.E. and Pilleri, G. (1978) The functional anatomy and general biology of Pseudorca crassidens (Owen) with a review of the hydrodynamica and acoustics in Cetacea. In Pilleri, G. (ed.) Investigations on Cetacea. Berne: Institute of Brain Anatomy, University of Berne, pp. 67228.Google Scholar
Rauschmann, M.A. (1992) Morphologie des Kopfes beim Schlanken Delphin Stenella attenuata mit besonderer Berücksichtigung der Hirnnerven. Inaugural-Dissertation. Fachbereich Medizin, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.Google Scholar
Rauschmann, M.A., Huggenberger, S., Kossatz, L.S. and Oelschläger, H.H.A. (2006) Head morphology in perinatal dolphins: a window into phylogeny and ontogeny. Journal of Morphology 267, 12951315.Google Scholar
Raven, H.C. and Gregory, W.K. (1933) The spermaceti organ and nasal passages of the sperm whale (Physeter catodon) and other odontocetes. American Museum Novitates 677, 117.Google Scholar
Rice, D.W. (1998) Marine mammals of the world – systematics and distribution. Lawrence, KS: Allan Press.Google Scholar
Ridgway, S.H. and Carder, D.A. (2001) Assessing hearing and sound production in cetaceans not available for behavioral audiograms: experiences with sperm, pygmy sperm, and gray whales. Aquatic Mammals 27, 267276.Google Scholar
Ridgway, S.H., Carder, D.A. and Green, R.F. (1980) Electromyographic and pressure events in the nasolaryngeal system of dolphins during sound production. In Busnel, R.G. and Fish, J.F. (eds) Animal sonar systems. New York, NY: Plenum Press, pp. 239249.Google Scholar
Rodionov, V.A. and Markov, V.I. (1992) Functional anatomy of the nasal system in the bottlenose dolphin. In Thomas, J.A., Kastelein, R.A. and Supin, A.Y. (eds) Marine mammal sensory systems. New York: Plenum Press, pp. 147177.Google Scholar
Rommel, S.A., Pabst, D.A. and McLellan, W.A. (2002) Skull anatomy. In Perrin, W.F., Würsig, B. and Thewissen, J.G.M. (eds) Encyclopedia of marine mammals. San Diego, CA: Academic Press, pp. 11031117.Google Scholar
Rommel, S.A., Pabst, D.A. and McLellan, W.A. (2009) Skull anatomy. In Perrin, W.F., Würsig, B. and Thewissen, J.G.M. (eds) Encyclopedia of marine mammals. San Diego, CA: Academic Press, pp. 10331047.Google Scholar
Scammon, C.M. (1874) The marine mammals of the Northwestern Coast of North America. Republication: 1968. New York, NY: Dover Publications, 319 pp. San Francisco, CA: John H. Carmany and Company and G.P. Putnam's Sons.Google Scholar
Schenkkan, E.J. and Purves, P.E. (1973) The comparative anatomy of the nasal tract and the function of the spermaceti organ in Physeteridae (Mammalia, Odontoceti). Bijdragen tot de Dierkunde 43, 93112.Google Scholar
Schulz, T.M., Whitehead, H., Gero, S. and Rendell, L. (2008) Overlapping and matching of codas in vocal interactions between sperm whales: insights into communication function. Animal Behaviour 76, 19771988.Google Scholar
Schulz, T.M., Whitehead, H. and Rendell, L. (2009) Off-axis effects on the multi-pulse structure of sperm whale coda clicks. Journal of the Acoustical Society of America 125, 17681773.Google Scholar
Sibson, F. (1848) On the blow-hole of the porpoise. Philosophical Transactions of the Royal Society of London 138, 117123.Google Scholar
Solntseva, G.N. and Rodionov, V.A. (2012) Structural and functional organization of sound generation and sound perception organs in dolphins. Acta Zoologica Bulgarica 69, 159173.Google Scholar
Steffen, A. and Steffen, W. (2003) Pottwale: Im dunklen Blau des Meeres. Bonn: Heel.Google Scholar
Teloni, V., Mark, J.P., Patrick, M.J.O. and Peter, M.T. (2008) Shallow food for deep divers: dynamic foraging behavior of male sperm whales in a high latitude habitat. Journal of Experimental Marine Biology and Ecology 354, 119131.Google Scholar
Teloni, V., Zimmer, W.M.X. and Tyack, P.L. (2005) Sperm whale trumpet sounds. Bioacoustics 15, 163174.Google Scholar
Thewissen, J.G.M., Williams, E.M., Roe, L.J. and Hussain, S.T. (2001) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413, 277281.Google Scholar
van Beneden, P.J. and Gervais, P. (1868) Ostéographie des Cétacés Vivants et Fossiles, Comprenant la Description et l'Iconographie du Squelette et du Système Dentaire de ces Animaux: ainsi que des documents relatifs à leur histoire naturelle. Paris: Arthus Bertrand.Google Scholar
Wahlberg, M. (2002) The acoustic behaviour of diving sperm whales observed with a hydrophone array. Journal of Experimental Marine Biology and Ecology 281, 5362.Google Scholar
Wahlberg, M., Frantzis, A., Alexiadou, P., Madsen, P.T. and Møhl, B. (2005) Click production during breathing in a sperm whale (Physeter macrocephalus). Journal of the Acoustical Society of America 118, 34043407.Google Scholar
Watkins, W.A. and Schevill, W.E. (1977) Sperm whale codas. Journal of the Acoustical Society of America 62, 14851490.Google Scholar
Watkins, W.A., Moore, K.E. and Tyack, P.L. (1985) Sperm whale acoustic behaviors in the Southeast Caribbean. Cetology 49, 115.Google Scholar
Watwood, S.L., Miller, P.J.O., Johnson, M., Madsen, P.T. and Tyack, P.L. (2006) Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). Journal of Animal Ecology 75, 814825.Google Scholar
Weilgart, L. and Whitehead, H. (1993) Coda communication by sperm whales (Physeter macrocephalus) off the Galápagos Islands. Canadian Journal of Zoology 71, 744752.Google Scholar
Weir, C.R., Frantzis, A., Alexiadou, P. and Goold, J.C. (2007) The burst-pulse nature of sounds emitted by sperm whales (Physeter macrocephalus). Journal of the Marine Biological Association of the United Kingdom 87, 3946.Google Scholar
Whitehead, H. (1996) Babysitting, dive synchrony, and indications of alloparental care in sperm whales. Behavioral Ecology and Sociobiology 38, 237244.Google Scholar
Whitehead, H. (2003) Sperm whales: social evolution in the ocean. Chicago, IL: University of Chicago Press.Google Scholar
Whitehead, H. (2009) Sperm whale Physeter macrocephalus. In Perrin, W.F., Würsig, B. and Thewissen, J.G.M. (eds) Encyclopedia of marine mammals. San Diego, CA: Academic Press, pp. 10911097.Google Scholar
Whitehead, H. and Weilgart, L. (2000) The sperm whale: social females and roving males. In Mann, J., Connor, R.C., Tyack, P.L. and Whitehead, H. (eds) Cetacean societies. Chicago, IL: University of Chicago Press, pp. 154172.Google Scholar
World Association of Veterinary Anatomists (2012) Nomina Anatomica Veterinaria (NAV). Nomina Anatomica Veterinaria, available at: http://www.wava-amav.org.Google Scholar
Zimmer, W.M.X., Madsen, P.T., Teloni, V., Johnson, M.P. and Tyack, P.L. (2005a) Off-axis effects on the multipulse structure of sperm whale usual clicks with implications for sound production. Journal of the Acoustical Society of America 118, 33373345.Google Scholar
Zimmer, W.M.X., Tyack, P.L., Johnson, M.P. and Madsen, P.T. (2005b) Three-dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis. Journal of the Acoustical Society of America 117, 14731485.Google Scholar