Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-21T14:34:11.610Z Has data issue: false hasContentIssue false

The Nitrogen Cycle in the Sea

Published online by Cambridge University Press:  11 May 2009

L. H. N. Cooper
Affiliation:
Assistant Chemist at the Plymouth Laboratory

Extract

The nitrogen cycle in the sea is reviewed as a whole in accordance with the scheme set out in Fig. 1. This summary includes only original matter, since the survey of other work does not admit of further condensation. The metabolism has been discussed of the following sources of nitrogen available to plants in sea water: mono, di and trimethylamine, trimethylamine oxide, urea, amino-acids, ammonia, hyponitrite, nitrite and nitrate. The methylamines will interfere in analyses of ammonia by distillation. Thermodynamic methods have been extensively used. The equilibrium between urea and ammonium cyanate at sea-water concentrations favours the cyanate. In sea water containing 28 mg. ammonia N per cu. m., the equilibrium mixture will contain fifteen times as much cyanate as urea. Hydrolysis of urea is probably purely chemical.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1937

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, H. E. & Horton, E., 1912. Studies on enzyme action. XV. Urease: a selective enzyme. Proc. Roy. Soc., Ser. B, Vol. 85, pp. 109–27.Google Scholar
Atkins, W. R. G., 1930a. Seasonal changes in the nitrite content of sea water. Journ. Mar. Biol. Assoc., Vol. XVI, pp. 515–18.CrossRefGoogle Scholar
Atkins, W. R. G., 1930b. Seasonal variations in the phosphate and silicate content of sea water in relation to the phytoplankton crop. Part V. November 1927 to April 1929, compared with earlier years from 1923. Journ. Mar. Biol. Assoc., Vol. XVI, pp. 821–52.CrossRefGoogle Scholar
Atkins, W. R. G., 1932. Nitrate in sea-water and its estimation by means of diphenylbenzidine. Journ. Mar. Biol. Assoc., Vol. XVIII, pp. 167–92.CrossRefGoogle Scholar
Atkins, W. R. G. & Poole, H. H., 1933. The photoelectric measurement of the penetration of light of various wave-lengths into the sea and the physiological bearing of the results. Phil. Trans. Roy. Soc., Ser. B, Vol. 222, pp. 129–64.Google Scholar
Barritt, N. W., 1933. The nitrification process in soils and biological niters. Ann. Appl. Biol., Vol. XX, pp. 165–84.CrossRefGoogle Scholar
Baur, E., 1902. Ueber zwei denitrificirende Bakterien aus der Ostsee. Wiss. Meeresuntersuch., Abt. Kiel, N.F., Bd. VI, pp. 922.Google Scholar
Beesley, R. M., 1914. Experiments on the rate of nitrification. Journ. Chem. Soc., Vol. CV, pp. 1014–24.CrossRefGoogle Scholar
Blom, J., 1928a. Zum Nachweis von Hydroxylamin. Biochem. Zeits., Bd. 194, pp. 385–91Google Scholar
Blom, J., 1928b. Bildung von Hydroxylamin bei der Reduktion von Nitraten durch Mikroorganismen. Biochem. Zeits., Bd. 194, pp. 392409.Google Scholar
Böhnecke, G., Hentschel, E. & Wattenberg, H., 1930. Über die hydrographischen, chemischen und biologischen Verhältnisse an der Meeresoberflache zwischen Island und Grönland. Ann. d. Hydr., Jahrg. 58, pp. 233–50.Google Scholar
Braarud, T. & Føyn, B., 1930. Beiträge zur Kenntnis des Stoffwechsels im Meer. Avh. Norske Videnskap Akad., No. 14, pp. 124.Google Scholar
Braarud, T. & Klem, A., 1931. Hydrographical and chemical investigations in the coastal waters off Mesre and in the Romsdalsf jord. valrådets Skr., No. 1, p. 58.Google Scholar
Brand, T. Von, 1937. Observations upon the nitrogen of the paniculate matter in the seaM. Biol. Bull., Vol. LXXII, pp. 16.CrossRefGoogle Scholar
Brand, T. Von, Rakestraw, N. W. & Renn, C. E., 1937. The experimental decom position and regeneration of nitrogenous organic matter in sea water. Biol. Bull., Vol. LXXII, pp. 165–75.CrossRefGoogle Scholar
Brandt, K., 1899. Ueber den Stoffwechsel im Meere. Wiss. Meeresuntersuch., Abt. Kiel., N.F., Bd. IV, pp. 213–30Google Scholar
Brandt, K., 1927. Stickstoffverbindungen im Meere. I. Wiss. Meeresuntersuch., Abt. Kiel., N.F., Bd. XX, pp. 201–92.Google Scholar
Burrows, G. J. & Fawsitt, C. E., 1914. The decomposition of carbamide. Journ. Chem. Soc., Vol. CV, pp. 609–23.CrossRefGoogle Scholar
Carey, C. L. & Waksman, S. A., 1934. The presence of nitrifying bacteria in deep seas. Science, Vol. 79, pp. 349–50.CrossRefGoogle ScholarPubMed
Clarke, F. W., 1924. The data of geochemistry, 5th edn., U.S. Geol. Survey Bull. 770, p. 55.Google Scholar
Cooper, L. H. N., 1933a and b. Chemical constituents of biological importance in the English Channel, November, 1930, to January, 1932. Part I. Phosphate, silicate, nitrate, nitrite, ammonia. Part II. Hydrogen ion concentration, excess base, carbon dioxide, and oxygen. Journ. Mar. Biol. Assoc., Vol. XVIII, pp. 677728 and 729–54.CrossRefGoogle Scholar
Cooper, L. H. N., 1933c. Chemical constituents of biological importance in the English Channel. Part III. June-December, 1932. Phosphate, silicate, nitrite, hydrogen ion concentration, with a comparison with wind records. Journ. Mar. Biol. Assoc., Vol. XIX, pp. 5562.CrossRefGoogle Scholar
Cooper, L. H. N., 1934. The determination of phosphorus and nitrogen in plankton. Journ. Mar. Biol. Assoc., Vol. XIX, pp. 755–60.CrossRefGoogle Scholar
Cooper, L. H. N., 1937a. Oxidation-reduction potential in sea water. Journ. Mar. Biol. Assoc., Vol. XXII, pp. 167–76.CrossRefGoogle Scholar
Cooper, L. H. N., 1937b. On the ratio of nitrogen to phosphorus in the sea. Journ. Mar. Biol. Assoc., Vol. XXII, pp. 177–82.CrossRefGoogle Scholar
Corbet, A. S., 1934 and 1935. The formation of hyponitrous acid as an intermediate compound in the biological or photochemical oxidation of ammonia to nitrous acid. I. Chemical reactions. II. Microbiological oxidation. Biochem. Journ., Vol. XVIII pp. 1575–82; Vol. XXIX, pp. 1086–96.CrossRefGoogle Scholar
Deacon, G. E. R., 1933. A general account of the hydrology of the Southern Ocean. Discovery Reports, Vol. VII, pp. 171238.Google Scholar
Edsaill, J. T. & Blanchard, M. H., 1933. Activity ratio of zwitterions and uncharged molecules in ampholyte solutions. Dissociation constants of amino acid esters. Journ. Amer. Chem. Soc., Vol. 55, pp. 2337–53.CrossRefGoogle Scholar
Gran, H. H., 1901. Studien über Meeresbakterien. I. Reduction von Nitraten und Nitriten. Bergens Mus. Aarbog, No. 10, pp. 123.Google Scholar
Harvey, H. W., 1926 and 1928. Nitrate in the sea. I and II. Journ. Mar. Biol. Assoc., Vol. XIV, pp. 7188 and Vol. XV, pp. 183–90CrossRefGoogle Scholar
Harvey, H. W., 1933. On the rate of diatom growth. Journ. Mar. Biol. Assoc., Vol. XIX, pp. 253–76.Google Scholar
Kapeller-Adler, R. & Krael, J., 1930a. Untersuchungen Über die Stickstoffverteilung in den Muskeln verschiedener Tierklassen. II. Über die Stickstoffverteilung im Rochen-und Haifischmuskel. Biochem. Zeits., Vol. 224, pp. 364–77.Google Scholar
Kapeller-Adler, R. & Krael, J., 1930b. Über das Auftreten von methylierten Stickstoflfverbindungen im Seetang. Biochem. Zeits., Vol. 224, pp. 378–83.Google Scholar
Keys, A., Christensen, E. H. & Krogh, A., 1935. The organic metabolism of sea water with special reference to the ultimate food cycle in the sea. Journ. Mar. Biol. Assoc., Vol. XX, pp. 181–96.CrossRefGoogle Scholar
Kingma Boltjes, T. Y., 1935. Arch. Mikrobiol., Vol. 6, p. 79; Ann. Rev. Biochem., 1936, Vol. V, p. 539.CrossRefGoogle Scholar
Korsakov, M. P., 1929. (Reduction of nitrates by bacteria.) Russ. Microbiol. Journ., Vol. 9, p. 108; Brit. Chem. Abst., A, pp. 265–6 (1931).Google Scholar
Kreps, E., 1934. Organic catalysts or enzymes in sea water. James Johnstone Memorial Volume, Liverpool, pp. 193202.Google Scholar
Kutscher, F. & Ackermann, D., 1933, 1936. The comparative biochemistry of vertebrates and invertebrates. Ann. Rev. Biochem., Vol. II, pp. 355–76; Vol. V, pp. 452–62.CrossRefGoogle Scholar
Lewis, G. N. & Randall, M., 1923. Thermodynamics. New York: McGraw Hill.Google Scholar
Lloyd, B., 1931a. A marine denitrifying organism. Journ. Bact., Vol. 21, pp. 8996.CrossRefGoogle ScholarPubMed
Lloyd, B., 1931b. Bacterial denitrification: an historical and critical survey. Journ. Roy. Tech. Coll Glasgow, pp. 530–50.Google Scholar
Lloyd, B., 1931c. Muds of the Clyde Sea area. II. Bacterial content. Journ. Mar. Biol Assoc., Vol. XVII, pp. 751–65.CrossRefGoogle Scholar
Lloyd, B. & Cranston, J. A., 1930. Studies in gas production by bacteria. Biochem. Journ., Vol. XXIV, pp. 529–48.CrossRefGoogle Scholar
Moore, B., 1919. Formation of nitrites from nitrates in aqueous solution by the action of sunlight. Proc. Roy. Soc. B, Vol. 90, pp. 158–67.Google Scholar
Noyes, A. A. & Kanolt, C. W., 1907. The electrical conductivity of aqueous solutions. Publ. Carnegie Inst., No. 63, p. 290.Google Scholar
Orr, A. P., 1926. The nitrite content of sea water. Journ. Mar. Biol. Assoc., Vol. XIV, pp. 5561.CrossRefGoogle Scholar
Pearsall, W. H. & Loose, L., 1937. The growth of Chlorella vulgaris in pure culture. Proc Roy. Soc, B, Vol. 121, pp. 451501.Google Scholar
Peterson, W. H., Fred, E. B. & Domogalla, B. P., 1925. The occurrence of amino acids and other organic nitrogen compounds in lake water. Journ. Biol. Chem., Vol. 63, pp. 287–95.CrossRefGoogle Scholar
Pettit, E., 1932. Measurements of ultra-violet solar radiation. Astrophys. Journ., Vol. 75, pp. 185221.Google Scholar
Powell, W. M. & Clarke, G. L., 1936. The reflection and absorption of daylight at the surface of the ocean. Journ. Opt. Soc. Amer., Vol. 26, pp. 123.CrossRefGoogle Scholar
Price, T. W., 1919. The decomposition of carbamide in the presence of nitric acid. Journ. Chem. Soc., Vol. XCV, pp. 1354–60.CrossRefGoogle Scholar
Rakestraw, N. W., 1933. Studies in the biology and chemistry of the Gulf of Maine. I. Chemistry in the waters of the Gulf of Maine in August 1932. Biol. Bull., Vol. LXIV, pp. 149–58.CrossRefGoogle Scholar
Rakestraw, N. W., 1936. The occurrence and significance of nitrite in the sea. Biol. Bull., Vol. LXXI, pp. 133–67.CrossRefGoogle Scholar
Rakestraw, N. W. & Hollaender, A., 1936. Photochemical oxidation of ammonia in sea water. Science, Vol. 84, pp. 442–3.CrossRefGoogle ScholarPubMed
Rao, G. G. & Dhar, N. R., 1931. Photosensitized oxidation of ammonia and ammonium salts and the problem of nitrification in soils. Soil Science, Vol. 31, pp. 379–84CrossRefGoogle Scholar
Robinson, R. J. & Wirth, H. E., 1934 a. Report on the free ammonia, albuminoid nitrogen and organic nitrogen in the waters of the Puget Sound area, during the summers of 1931 and 1932. Journ. Cons. Int. Explor. Mer, Vol. IX, pp. 1527.CrossRefGoogle Scholar
Robinson, R. J. & Wirth, H. E., 1934b. Free ammonia, albuminoid nitrogen, and organic nitrogen in the waters of the Pacific Ocean off the coasts of Washington and Vancouver Island. Journ. Cons. Int. Explor. Mer, Vol. IX, pp. 187–95.CrossRefGoogle Scholar
Schreiber, E., 1927. Die Reinkultur von marinem Phytoplankton und deren Bedeutung fur die Erforschung der Produktionsfahigkeit des Meerwassers. Wiss. Meeresuntersuch., Abt. Helgoland, N.F., Bd. XVI, No. 10, pp. 134.Google Scholar
Schümann, 1900. Ber. deut. chem. Ges., Vol. 33, p. 527; cit. Lewis & Randall, 1923.CrossRefGoogle Scholar
Soot-Ryen, T., 1934. Hydrographical investigations in the Tromsø district 1930. Tromsø Museums årshefter, Vol. 52, pp. 178 + I–XXX.Google Scholar
Taylor, T. W. J., 1928. The action of nitrous acid on amino-compounds. Part I. Methylamine and ammonia. Part II. Aliphatic amino-acids. Journ. Chem. Soc., pp. 10991105; 1897–1906.CrossRefGoogle Scholar
Taylor, T. W. J. & Baker, W., 1937. Revised edition of N. V. Sidgwick's Organic Chemistry of Nitrogen. Oxford.Google Scholar
Villars, D. S., 1927. The photolysis of potassium nitrate. Journ. Amer. Chem. Soc., Vol. 49, pp. 326–37.CrossRefGoogle Scholar
Waksman, S. A. & Carey, C. L., 1935 Decomposition of organic matter in sea water by bacteria. II. Influence of addition of organic substances upon bacterial activities. Journ. Bact., Vol. 29, pp. 545–61.CrossRefGoogle ScholarPubMed
Waksman, S. A., Hotchkiss, M. & Carey, C. L., 1933. Marine bacteria and their role in the cycle of life in the sea. II. Bacteria concerned in the cycle of nitrogen in the sea. Biol. Bull., Vol. LXV, pp. 137–67.CrossRefGoogle Scholar
Waksman, S. A., Reuszer, H. W., Carey, C. L., Hotchkiss, M. & Renn, C. E., 1933. Studies on the biology and chemistry of the Gulf of Maine. III. Bacterio logical investigations of the sea water and marine bottoms. Biol. Bull., Vol. LXIV, pp. 183205.CrossRefGoogle Scholar
Warburg, O. & Negelein, E., 1920. (The reduction of nitric acid by green cells.) Biochem. Zeits., Vol. 110, pp. 66115Chem. Abst., Vol. 15, p. 380 (1921).Google Scholar
Wattenberg, H., 1937. Critical review of the methods used for determining nutrient salts and related constituents of sea water. Rapp. Proc. Verb. Cons. Int. Explor. Mer, Vol. CIII, pp. 133.Google Scholar
Wattenberg, H. & Meyer, H., 1936. Der jahreszeitliche Gang des Gehalts des Meerwassers an Planktonnährstoffen in der Kielen Bucht im Jahre 1935. Kieler Meeresforschungen, Bd. 1, pp. 264–78.Google Scholar
Werner, E. A., 1918. The constitution of carbamides. Part V. The mechanism of the decomposition of urea when heated in solution with alkalis and with acids respectively. The hydrolysis of metallic cyanates. Journ. Chem. Soc., Vol. CXIII, pp. 8499.CrossRefGoogle Scholar
Zobell, C. E., 1933. Photochemical nitrification in sea water. Science, Vol. 77, pp. 27–8.CrossRefGoogle ScholarPubMed
Zobell, C. E., 1935a. The assimilation of ammonium nitrogen by Nitzschia closterium and other marine phytoplankton. Proc. Nat. Acad. Sci., Vol. 21, pp. 517–22.CrossRefGoogle Scholar
Zobell, C. E., 1935b. Oxidation-reduction potentials and the activity of marine nitrifiers. Journ. Bact., Vol. 29, p. 78.Google Scholar
Zobell, C. E. & Anderson, D. Q., 1936. Vertical distribution of bacteria in marine sediments. Bull. Amer. Assoc. Petroleum Geologists, Vol. 20, pp. 260–9.Google Scholar
Zobell, C. E. & Feltham, C. B., 1935. The occurrence and activity of urea-splitting bacteria in the sea. Science, Vol. 81, pp. 234–6.CrossRefGoogle ScholarPubMed