Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T09:20:53.327Z Has data issue: false hasContentIssue false

Length, weight and condition factor of Acartia clausi (Copepoda) in the eastern Mediterranean

Published online by Cambridge University Press:  11 May 2009

Epaminondas D. Christou
Affiliation:
National Centre for Marine Research, Agios Kosmas, Hellinikon, GR-166 04, Athens, Greece
George C. Verriopoulos
Affiliation:
Zoological Laboratory, University of Athens, Panepistimiopolis, GR-157 84, Athens, Greece

Extract

Cephalothorax length and dry weight of copepodite stages and adults of the planktonic copepod Acartia clausi Giesbrecht in the Saronikos Gulf, Greece, were measured. Length-weight relationships and condition factor were also determined. The results were based on 17 zooplankton samples collected between November 1989 and June 1990, a period in which the abundance of A. clausi is significant. There was an inverse relationship between temperature and length, a pattern shown by many copepods. Temperature had the most significant effect on length, which was also affected by chlorophyll level. This strong temporal variation in length might possibly be considered as an adaptation of A. clausi to a continuously fluctuating environment. Length-weight regressions displayed high coefficients of determination (r2=0.98). Food, expressed as chlorophyll, affected the size and condition factor, and could act as a limiting factor on length and weight of A. clausi in the study area.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, D. F. & Prairie, Y. T., 1985. Practical guidelines for the use of zooplankton length-weight regression equations. Journal of Plankton Research, 7, 955960.CrossRefGoogle Scholar
Burkill, P. H. & Kendall, T. F., 1982. Production of the copepod Eurytemora affinis in the Bristol Channel. Marine Ecology Progress Series, 7, 2131.CrossRefGoogle Scholar
Chisholm, L. A. & Roff, J. C., 1990. Size-weight relationships and biomass of tropical neritic copepods off Kingston, Jamaica. Marine Biology, 106, 7177.CrossRefGoogle Scholar
Christou, E. D., 1990. Fluctuations of zooplankton, during spring and summer in a coastal area of the Saronikos Gulf. In Proceedings of the Third Hellenic Symposium of Oceanography and Fisheries, pp. 513520. Athens: N.C.M.R. [In Greek.]Google Scholar
Christou, E. D. & Verriopoulos, G. C., in press. Analysis of the biological cycle of Acartia clausi (Copepoda) in a meso-oligotrophic coastal area of the eastern Mediterranean. Marine Biology.Google Scholar
Cohen, R. E. & Lough, R. G., 1981. Length-weight relationships for several copepods dominant in the Georges Bank - Gulf of Maine area. Journal of Northwest Atlantic Fishery Science, 2, 4752.CrossRefGoogle Scholar
Conover, R. J., 1959. Regional and seasonal variation in the respiratory rate of marine copepods. Limnology and Oceanography, 4, 259268.CrossRefGoogle Scholar
Deevey, G. B., 1960. Relative effects of temperature and food on seasonal variations in length of marine copepods in some eastern American and western European waters. Bulletin of the Bingham Oceanographic Collection. Yale University, 17,5486.Google Scholar
Durbin, E. G. & Durbin, A. G., 1978. Length and weight relationships of Acartia clausi from Narragansett Bay, R.I. Limnology and Oceanography, 23, 958969.CrossRefGoogle Scholar
Durbin, E. G., Durbin, A. G., Smayda T. J. & Verity, P. G., 1983. Food limitation of production by adult Acartia tonsa in Narragansett Bay, Rhode Island. Limnology and Oceanography, 28, 11991213.CrossRefGoogle Scholar
Friligos, N., 1982. Enrichment of inorganic nutrients in the Inner Saronikos Gulf (1973–1976). Marine Pollution Bulletin, 13, 154158.CrossRefGoogle Scholar
Friligos, N., 1984. Nutrients of the Saronikos Gulf in relation to environmental characteristics (1973–1976). Hydrobiologia, 112, 1725.CrossRefGoogle Scholar
Furlan, L., Umani, S. F. & Specchi, M., 1983. Some correlations between hydrological parameters and the population of Acartia clausi in theGulf of Trieste. Rapports et Procès-verbaux des Réunions. Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée. Monaco, 28(9), 165167.Google Scholar
Gaudy, R., 1984. Structure et fonctionnement de l'écosystème zooplanctonique de l'interface terremer en Mediterranée Nord-Occidentale. Océanis, 10, 367383.Google Scholar
Gaudy, R., Moraitou-Apostolopoulou, M., Pagano, M., Saint-Jean, L. & Verriopoulos, G., 1988. Salinity a decisive factor in the length of cephalothorax of Acartia clausi from three different areas (Greece and Ivory Coast). Rapports et Procès-verbaux des Réunions. Commission Internationale pour l'Exploration Scientifique de la Mer Mèditerranée. Monaco, 31(2), 233.Google Scholar
Geller, W. & Müller, H., 1985. Seasonal variability in the relationship between body length and individual dry weight as related to food abundance and clutch size in two coexisting Daphnia species. Journal of Plankton Research, 7, 118.CrossRefGoogle Scholar
Harris, R. P. & Paffenhöffer, G.-A., 1976. Feeding, growth and reproduction of the marine planktonic copepod Temora longicornis Müller. Journal of the Marine Biological Association of the United Kingdom, 56, 675690.CrossRefGoogle Scholar
Ianora, A., Mazzocchi, M. G. & Scotto Di Carlo, B., 1985. Zooplankton community structure for coastal waters of the Gulf of Naples in the summer of 1983. Rapports et Procès-verbeaux des Réunions. Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée. Monaco, 29(9), 299300.Google Scholar
Ignatiades, L., Karydis, M., Vassiliou, A. & Moschopoulou, N., 1982. Hydrography. Data report of phytoplankton ecology of Saronikos Gulf, Aegean Sea. Nuclear Research Centre Democritos, Athens, DEMO (82/1). [In Greek]Google Scholar
Ignatiades, L., Moschopoulou, N., Karydis, M. & Vassiliou, A., 1983. Phytoplankton. Data report of phytoplankton ecology of Saronikos Gulf, Aegean Sea. Nuclear Research Centre Democritos, Athens, DEMO (83/8). [In Greek]Google Scholar
Kimmerer, W. J. & McKinnon, A. D., 1985. A comparative study of the zooplankton in two adjacent embayments, Port Phillip and Westernport Bays, Australia. Estuarine, Coastal and Shelf Science, 21, 145159.CrossRefGoogle Scholar
Klein, Breteler W. C. M., Fransz, H. G. & Gonzalez, S. R., 1982. Growth and development of four calanoid copepod species under experimental and natural conditions. Netherlands Journal of Sea Research, 16, 195207.Google Scholar
Klein, Breteler W. C. M. & Gonzalez, S. R., 1982. Influence of cultivation and food concentration on body length of calanoid copepods. Marine Biology, 71, 157161.CrossRefGoogle Scholar
Landry, M. R., 1978. Population dynamics and production of a planktonic marine copepod, Acartia clausi, in a small temperate lagoon on San Juan Island, Washington. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 63, 77119.CrossRefGoogle Scholar
Le Cren, E. D., 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology, 20, 201219.CrossRefGoogle Scholar
Lock, A. R. & McLaren, I. A., 1970. The effect of varying and constant temperatures on the size of a marine copepod. Limnology and Oceanography, 15, 638640.CrossRefGoogle Scholar
McLaren, I. A., 1965. Some relationships between temperature and egg size, body size, development rate, and fecundity, of the copepod Pseudocalanus. Limnology and Oceanography, 10, 528538.CrossRefGoogle Scholar
McLaren, I. A. & Corkett, C. J., 1981. Temperature-dependent growth and production by a marine copepod. Canadian Journal of Fisheries and Aquatic Sciences, 38, 7783.CrossRefGoogle Scholar
Moraitou-Apostolopoulou, M., 1975. Seasonal variations in length of three copepods in Saronic Bay (Greece). Bollettino di Pesca, Piscicoltura e Idrobiologia, 30, 93101.Google Scholar
Moraitou-Apostolopoulou, M. & Verriopoulos, G., 1979. Differentiation morphologique entre deux populations d'Acartia clausi (Copepoda) provenant de biotopes différemment pollués. Revue Internationale d'Océanographie Médicale. Nice, 5354, 7786.Google Scholar
Moraitou-Apostolopoulou, M., Verriopoulos, G. & Tsipoura, N., 1986. Dimensional differentiation between five planktonic organisms living in two areas characterized by different salinity conditions. Archiv für Hydrobiologie, 105, 459469.CrossRefGoogle Scholar
Mullin, M. M. & Brooks, E. R., 1976. Some consequences of distributional heterogeneity of phyto-plankton and zooplankton. Limnology and Oceanography, 21, 784796.CrossRefGoogle Scholar
Myers, R. A. & Runge, J. A., 1983. Predictions of seasonal natural mortality rates in a copepod population using life-history theory. Marine Ecology Progress Series, 11, 189194.CrossRefGoogle Scholar
Omori, M. & Ikeda, T., 1984. Methods in marine zooplankton ecology. New York: John Wiley & Sons.Google Scholar
Paffenhöfer, G.-A., 1970. Cultivation of Calanus helgolandicus under controlled conditions. Helgoländer Wissenschaftliche Meeresuntersuchungen, 20, 346359.CrossRefGoogle Scholar
Pagano, M. & Saint-Jean, L., 1983. Croissance en poids d'Acartia clausi en lagune Ébrié (Côte d'lvoire). Revue d'Hydrobiologie Tropicale. ORSTROM, Paris, 16, 151163.Google Scholar
Sander, F. & Moore, E. A., 1983. Physioecology of tropical marine copepods. I. Size variations. Crustaceana, 44, 8393.CrossRefGoogle Scholar
Tranter, D. J. & Smith, P. E., 1968. Zooplankton sampling. Monographs on Oceanographic Methodology (Unesco), 2, 2756.Google Scholar
Uye, S., 1982 a. Population dynamics and production of Acartia clausi Giesbrecht (Copepoda: Calanoida) in inlet waters. Journal of Experimental Marine Biology and Ecology, 57, 5583.CrossRefGoogle Scholar
Uye, S., 1982 b. Length-weight relationships of important zooplankton from the inland Sea of Japan. Journal of the Oceanographical Society of Japan, 38, 149158.CrossRefGoogle Scholar
Vidal, J., 1980 a. Physioecology of zooplankton. III. Effects of phytoplankton concentration, temperature, and body size on the metabolic rate of Calanus pacificus. Marine Biology, 56, 195202.CrossRefGoogle Scholar
Vidal, J., 1980 b. Physioecology of zooplankton. IV. Effects of phytoplankton concentration, temperature, and body size on the net production efficiency of Calanus pacificus. Marine Biology, 56, 203211.CrossRefGoogle Scholar
Warren, G. J., Evans, M. S., Jude, D. J. & Ayers, J. C., 1986. Seasonal variations in copepod size: effects of temperature, food abundance, and vertebrate predation. Journal of Plankton Research, 8, 841853.CrossRefGoogle Scholar