Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T15:42:00.507Z Has data issue: false hasContentIssue false

The Integumentary Mucous Secretions of the Ophiuroid Ophiocomina Nigra

Published online by Cambridge University Press:  11 May 2009

A. R. Fontaine
Affiliation:
Department of Biology, University of Victoria, Victoria, B.C., Canada

Extract

The general histology of the integument of the ophiuroid Ophiocomina nigra is outlined. Two types of integumentary mucous glands are described in detail for the first time. The first is a multicellular gland, the basal end of which is located deep within the calcareous layer of the integument. The source of the secretion is a variable number of nuclei embedded in a common cytoplasmic mass filled with fine basiphil granules. These cells contributed their secretion to a duct which pursues a tortuous course through the integument. The ducts frequently branch and anastomose so that any one exit pore may extrude mucin derived from a number of separate, polynuclear sources. The structure so formed is, thus, a massive, multicellular gland. Histochemical studies demonstrate that the mucin is a highly sulphated acid mucopolysaccharide. The second type of mucus-secreting unit is a unicellular gland usually located superficially in the calcareous layer or sometimes restricted to the epidermis and distributed universally over the body. The secretion product of these cells is shown histochemically to be a simple acid mucopolysaccharide. The mucin secreted by the tube-foot glands is demonstrated also to be a highly sulphated acid mucopolysaccharide.

The function of these secretions has been investigated to some extent. The massive glands secrete only under conditions of alarm and it is suggested that this mucus serves as a defence against predation. The unicellular glands secrete in a periodic fashion correlated with the act of feeding. This secretion is probably utilized in a suspension-feeding mechanism.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, J. R., 1947. The histochemical recognition of certain guanidine derivatives. Quart. J. micr. Sci., Vol. 88, pp. 115–21.Google ScholarPubMed
Baker, J. R., 1949. Further remarks on the Golgi element. Quart. J. micr. Sci., Vol. 90, pp. 293307.Google Scholar
Baker, J. R., 1956. The histochemical recognition of phenols, especially tyrosine. Quart. J. micr. Sci., Vol. 97, pp. 161–4.Google Scholar
Blegvad, H., 1914. Food and conditions of nourishment among the invertebrate animals in or on the sea bottom in Danish waters. Rep. Danish biol. Sta., Vol. 22, pp. 3778.Google Scholar
Bradbury, S., 1956. Human saliva as a convenient source of ribonuclease. Quart. J. micr. Sci., Vol. 97, pp. 323–7.Google Scholar
Cuénot, L., 1888. Études anatomiques et morphologiques sur les Ophiures. Arch. Zool. exp. gén., Sér. 2, T. 6, pp. 3382.Google Scholar
Cuénot, L., 1891. Études morphologiques sur les Échinodermes. Arch. Biol., T. 11, pp. 313680.Google Scholar
Cuénot, L., 1948. Anatomie, éthologie et systématique des Échinodermes. In Grassé, P.-P. (ed.), Traité de Zoologie, T. 11. Paris: Masson.Google Scholar
Defretin, R., 1952. Sur les mucocytes des podia de quelques Échinodermes. Comparaison de leur sécrétion avec d'autres mucoprotides. C.R. Acad. Sci., Paris, T. 234, pp. 1806–8.Google Scholar
Eichelbaum, E., 1910. Über Nahrung und Ernährungsorgane von Echinodermen. Wiss. Meeresuntersuch., Abt. Kiel, Bd. 11, pp. 187274.Google Scholar
Fontaine, A. R., 1955. Secretion of a highly sulphated acid mucopolysaccharide by the brittle-star, Ophiocomina nigra. Nature, Lond., Vol. 176, pp. 606–7.CrossRefGoogle Scholar
Fontaine, A. R., 1961. The functional significance of some species characters in ophiuroids. D.Phil, thesis, Oxford.Google Scholar
Fontaine, A. R., 1962a. The colours of Ophiocomina nigra (Abildgaard). II. The occurrence of melanin and fluorescent pigments. J. mar. biol. Ass. U.K., Vol. 42, pp. 931.CrossRefGoogle Scholar
Fontaine, A. R., 1962b. The colours of Ophiocomina nigra (Abildgaard). III. Carotenoid pigments. J. mar. biol. Ass. U.K., Vol. 42, pp. 3347.CrossRefGoogle Scholar
Hamann, O., 1889. Beiträge zur Histologie der Echinodermen. Hft. 4. Anatomie und Histologie der Ophiuren und Crinoiden. Jena: Fischer.Google Scholar
Hartley, P. H. T., 1940. The Saltash tuck-net fishery and the ecology of some estuarine fishes. J. mar. biol. Ass. U.K., Vol. 24, pp. 168.CrossRefGoogle Scholar
Hunt, O. D., 1925. The food of the bottom fauna of the Plymouth fishing grounds. J. mar. biol. Ass. U.K., Vol. 13, pp. 560–98.CrossRefGoogle Scholar
Hyman, L. H., 1955. The Invertebrates. Vol. 4. Echinodermata. New York: McGraw-Hill.Google Scholar
Jordan, B. M. & Baker, J. R., 1955. A simple pyronine/methyl green technique. Quart. J. micr. Sci., Vol. 96, pp. 177–9.Google Scholar
Jorpes, J. E., 1946. Heparin in the Treatment of Thrombosis. 2nd ed. Oxford University Press.Google Scholar
Kent, P. W. & Whitehouse, M. W., 1955. Biochemistry of the Aminosugars. London: Butterworths.Google Scholar
Ludwig, H. & Hamann, O. 1901. Echinodermen (Stachelhäuter). Die Schlangensterne. Bronn's Klassen und Ordnungen des Thier-Reichs, Bd. 2, Abt. 3, Buch 3. Leipzig: Winter.Google Scholar
Mazia, D., Brewer, P. A. & Alfert, M., 1953. The cytochemical staining and measurement of protein with mercuric bromphenol blue. Biol. Bull., Woods Hole, Vol. 104, pp. 5767.CrossRefGoogle Scholar
Mortensen, T., 1927. Handbook of the Echinoderms of the British Isles. Oxford University Press.CrossRefGoogle Scholar
Nichols, D., 1959 a. The histology of the tube-feet and clavulae of Echinocardium cordatum. Quart. J. micr. Sci., Vol. 100, pp. 7387.Google Scholar
Nichols, D., 1959b. The histology and activities of the tube-feet of Echinocyamus pusillus. Quart. J. micr. Sci., Vol. 100, pp. 539–55.Google Scholar
Nichols, D., 1960. The histology and activities of the tube-feet of Antedon bifida. Quart. J. micr. Sci., Vol. 101, pp. 105–17.Google Scholar
Östergren, H., 1904. Über die Funktion der Füsschen bei den Schlangensternen. Biol. Zbl., Bd. 24, pp. 559–65.Google Scholar
Pantin, C. F. A., 1948. Notes on Microscopical Technique for Zoologists. Cambridge University Press.Google Scholar
Pearse, A. G. E., 1961. Histochemistry—Theoretical and Applied. London: Churchill.Google Scholar
Reichensperger, A., 1908. Die Drüsengebilde der Ophiuren. Z. wiss. ZooL, Bd. 91, pp. 304–50.Google Scholar
Schloss, B., 1951. Colorimetric determination of glucosamine. Analyt. Chem., Vol. 23, pp. 1321–5.CrossRefGoogle Scholar
Smith, J. E., 1937. The structure and function of the tube-feet in certain echinoderms. J. mar. biol. Ass. U.K., Vol. 22, pp. 345–57.CrossRefGoogle Scholar
Sokolow, I., 1909. Zur Frage über die Leuchten und die Drüsengebilde der Ophiuren. Biol. Zbl., Bd. 29, pp. 367648.Google Scholar
Steven, G. A., 1930. Bottom fauna and the food of fishes. J. mar. biol. Ass. U.K., Vol. 16, pp. 677705.CrossRefGoogle Scholar
Thomas, L. J., 1954. The localization of heparin-like blood anticoagulant substances in the tissues of Spisula solidissima. Biol. Bull., Woods Hole, Vol. 106, pp. 129–38.CrossRefGoogle Scholar
Thompson, T. E., 1960. Defensive acid secretion in marine gastropods. J. mar. biol. Ass. U.K., Vol. 39, pp. 115–22.CrossRefGoogle Scholar
Vevers, H. G., 1956. Observations on the feeding mechanisms in some echinoderms. Proc. zool. Soc. Lond., Vol. 126, pp. 484–5.Google Scholar