Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T08:08:28.869Z Has data issue: false hasContentIssue false

The hydrothermal vent community of a new deep-sea field, Ashadze-1, 12°58′N on the Mid-Atlantic Ridge

Published online by Cambridge University Press:  23 June 2010

M-C. Fabri*
Affiliation:
Ifremer Brest, Département Etude des Ecosystèmes Profonds, BP70, 29280 Plouzané, France
A. Bargain
Affiliation:
Université de Nantes, Equipe Mer Molécule et Santé EA2160, BP 92208, 44322 Nantes, France
P. Briand
Affiliation:
Ifremer Brest, Département Etude des Ecosystèmes Profonds, BP70, 29280 Plouzané, France
A. Gebruk
Affiliation:
P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovsky Pr. 36, Moscow 117997, Russia
Y. Fouquet
Affiliation:
Ifremer Brest, Département Géosciences Marine, BP70, 29280 Plouzané, France
M. Morineaux
Affiliation:
Ifremer Brest, Département Etude des Ecosystèmes Profonds, BP70, 29280 Plouzané, France
D. Desbruyeres
Affiliation:
Ifremer Brest, Département Etude des Ecosystèmes Profonds, BP70, 29280 Plouzané, France
*
Correspondence should be addressed to: M-C. Fabri, Ifremer Brest, Département Etude des Ecosystèmes Profonds, BP70, 29280 Plouzané, France email: [email protected]

Abstract

Ashadze-1 (12° 58′N 44° 51′W, 4080 m) on the Mid-Atlantic Ridge (MAR) is the deepest known active hydrothermal vent field. The first observations on this site were numerous clear and black smokers and surprisingly few known symbiotic species dominant in other vent areas on the MAR. The species most abundant at Ashadze-1 are those usually found at the periphery of hydrothermal communities: sea-anemones Maractis rimicarivora and chaetopterid polychaetes Phyllochaetopterus sp. nov. This study comprised site mapping and faunal sampling and Ashadze-1 was completely mapped by using the remote operated vehicle ‘Victor 6000’ and a new high resolution tool available for deep-sea research. A photo-mapping survey was carried out with a long range optical black and white camera. Digitization of substrata and sea-anemones visible on the images was performed by GIS. Spatial distribution of Ma. rimicarivora was distinguished by high densities of 32 ind.m−2 on the western side of the main smoker area. Submersible sampling operations allowed taxonomic identification within a 200 × 110 m area. Carbon, nitrogen and sulphur isotopic ratios were measured in four dominant species to identify their trophic position. The present paper gives the complete maps and describes the faunal community of the Ashadze-1 vent field. The results obtained led us to consider this site as an ecosystem in its declining stage. Finally we compare the similarities of this community to other hydrothermal communities on the northern MAR.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachraty, C., Legendre, P. and Desbruyères, D. (2009) Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep-Sea Research Part I: Oceanographic Research Papers 56, 13711378.CrossRefGoogle Scholar
Beltenev, V., Ivanov, V., Shagin, A., Segeyev, M., Rozhdestvenskaya, I., Shilov, V., Debretzova, I., Cherkashev, G., Samovarov, M. and Poroshina, I. (2005) New hydrothermal sites at 13°N, Mid-Atlantic Ridge. InterRidge News 14, 1416.Google Scholar
Beltenev, V., Neschertov, A., Shilov, V., Ivanov, V., Shagin, A., Stepanova, T., Cherkashev, G., Batuev, B., Samovarov, M., Rozhdestvenskaya, I., Andreeva, I., Fedorov, I., Davydov, M., Romanova, A., Rumyantsev, A., Zaharov, V., Luneva, N. and Artem'eva, O. (2003) New discoveries at 12°58′N, 44°52′W, MAR: Professor Logatchev-22 cruise, initial results. InterRidge News 12, 1314.Google Scholar
Bergquist, D.C., Eckner, J.T., Urcuyo, I.A., Cordes, E.E., Hourdez, S., Macko, S.A. and Fisher, C.R. (2007) Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Marine Ecology Progress Series 330, 4965.CrossRefGoogle Scholar
Brooks, J.M., Kennicutt, M.C. II, Fisher, C.R., Macko, S.A., Cole, K., Childress, J.J., Bidigare, R.R. and Vetter, R.D. (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238, 11381142.CrossRefGoogle ScholarPubMed
Charlou, J.L., Donval, J.P., Konn, C., Ondréas, H., Fouquet, Y., Jean-Baptiste, P. and Fourré, E. (in press) High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. AGU Monograph Series—Diversity of Hydrothermal Systems on Slow-spreading Ocean Ridges.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. Plymouth: PRIMER-E.Google Scholar
Colaço, A., Dehairs, F. and Desbruyères, D. (2002) Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-Sea Research Part I: Oceanographic Research Papers 49, 395.CrossRefGoogle Scholar
Conway, N.M., Kennicutt, M.C. and Van Dover, C.L. (1994) Stable isotopes in the study of marine chemosynthetic-based ecosystems. In Lajtha, K. and Michener, R.H. (eds) Stable isotopes in ecology and environmental science. London: Blackwell Scientific Publications, pp. 158186.Google Scholar
Copley, J.T.P., Jorgensen, P.B.K. and Sohn, R.A. (2007) Assessment of decadal-scale ecological change at a deep Mid-Atlantic hydrothermal vent and reproductive time-series in the shrimp Rimicaris exoculata. Journal of the Marine Biological Association of the United Kingdon 87, 859867.CrossRefGoogle Scholar
Copley, T.P., Tyler, P.A., Van Dover, C., Schultz, A., Dickson, P., Singh, S. and Sulanowska, M. (1999) Subannual temporal variation in faunal distribution at the TAG hydrothermal Mound (26°N, Mid-Atlantic Ridge). Marine Ecology 20, 291306.CrossRefGoogle Scholar
De Busserolles, F., Sarrazin, J., Gauthier, O., Gélinas, Y., Fabri, M.C., Sarradin, P.M. and Desbruyères, D. (2009) Are spatial variations in the diets of hydrothermal fauna linked to local environmental conditions? Deep-Sea Research Part II: Topical Studies in Oceanography 56, 16491664.CrossRefGoogle Scholar
Desbruyères, D., Almeida, A., Biscoito, M., Comtet, T., Khripounoff, A., Le Bris, N., Sarradin, P.M. and Segonzac, M. (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia 440, 201216.CrossRefGoogle Scholar
Desbruyères, D., Biscoito, M., Caprais, J.-C., Colaço, A., Comtet, T., Crassous, P., Fouquet, Y., Khripounoff, A., Le Bris, N., Olu, K., Riso, R., Sarradin, P.-M., Segonzac, M. and Vangriesheim, A. (2001) Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge when approaching the Azores Plateau. Deep-Sea Research I 48, 13251346.CrossRefGoogle Scholar
Desbruyères, D., Segonzac, M. and Bright, M. (2006) Handbook of deep-sea hydrothermal vent fauna. Linz: Landesmuseen.Google Scholar
Fabri, M.-C., Galeron, J., Larour, M. and Maudire, G. (2006) Combining the Biocean database for deep-sea benthic data and online Ocean Biogeographic Information System. Marine Ecology Progress Series 316, 215224.CrossRefGoogle Scholar
Fautin, D.G. and Barber, B.R. (1999) Maractis rimicarivora, a new genus and species of sea anemone (Cnidaria: Anthozoa: Actiniaria: Actinostolidae) from an Atlantic hydrothermal vent. Proceedings of the Biological Society of Washington 112, 624631.Google Scholar
Fouquet, Y., Cherkashov, G., Charlou, J.L., Ondréas, H., Birot, D., Cannat, M., Bortnikov, N., Silantyev, S., Sudarikov, S., Cambon-Bonnavita, M.A., Desbruyères, D., Fabri, M.C., Querellou, J., Hourdez, S., Gebruk, A., Sokolova, T., Hoise, E., Mercier, E., Kohn, C., Donval, J.P., Etoubleau, J., Normand, A., Stephan, M., Briand, P., Crozon, J., Fernagu, P. and Buffier, E. (2008) Serpentine cruise—ultramafic hosted hydrothermal deposits on the Mid-Atlantic Ridge: first submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields. InterRidge News 17, 1519.Google Scholar
Gebruk, A. and Mironov, A.N. (2006) Biogeography of Atlantic hydrothermal vents. In Vinogradov, M.E. and Vereshchaka, A.L. (eds) Ecosystems of Atlantic hydrothermal vents. Moscow: Nauka, pp. 119162.Google Scholar
Gebruk, A.V., Southward, E.C., Kennedy, H. and Southward, A.J. (2000) Food sources, behaviour, and distribution of hydrothermal vent shrimps at the Mid-Atlantic Ridge. Journal of the Marine Biological Association of the United Kingdom 80, 485499.CrossRefGoogle Scholar
Haase, K.M., Petersen, S., Koschinsky, A., Seifert, R., Devey, C., Keir, R., Lackschewitz, K., Melchert, B., Perner, M., Schmale, O., Süling, J., Dubilier, N., Zielinski, F., Fretzdorff, S., Garbe-Schönberg, D., Westernströer, U., German, C., Shank, T., Yoerger, D.R., Giere, O., Kuever, J., Marbler, H., Mawick, J., Mertens, C., Stöber, U., Walter, M., Ostertag-Henning, C., Paulick, H., Peters, M., Straus, H., Sander, S., Stecher, J., Warmuth, M. and Weber, S. (2007) Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems 8, 117.CrossRefGoogle Scholar
Johnson, S.B., Waren, A. and Vrijenhoek, R.C. (2008) DNA barcoding of Lepetodrilus limpets reveals cryptic species. Journal of Shellfish Research 27, 4351.CrossRefGoogle Scholar
Kelley, D.S., Karson, J.A., Blackman, D.K., Früh-Green, G.L., Butterfield, D.A., Lilley, M.D., Olson, E.J., Schrenk, M.O., Roe, K.K., Lebon, G.T., Rivizzigno, P. and Party, T.A.-S. (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412, 145148.CrossRefGoogle Scholar
Koschinsky, A., Billings, C., Devey, C., Dubilier, N., Duester, A., Edge, D., Garbe-Schönberg, D., German, C., Giere, O., Keir, R., Lackschewitz, K., Mai, H.A., Marbler, H., Mawick, J., Melchert, B., Mertens, C., Peters, M., Sander, S., Schmale, O., Schimdt, W., Seifert, R., Seiter, C., Stöber, U., Suck, I., Walter, M., Weber, S., Yoerger, D.R., Zarrouk, M. and Zielinski, F. (2006) Discovery of new hydrothermal vents on the southern Mid-Atlantic Ridge (4°S–10°S) during cruise M68/1. InterRidge News 15, 915.Google Scholar
Legendre, P. and Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271280.CrossRefGoogle ScholarPubMed
Levesque, C. and Juniper, S.K. (2002) Particulate matter as a food source at a nascent hydrothermal vent on the Juan de Fuca Ridge. Cahiers de Biologie Marine 43, 289292.Google Scholar
Limén, H., Levesque, C. and Juniper, S.K. (2007) POM in macro-/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge. Marine Biology 153, 129139.CrossRefGoogle Scholar
McCutchan, J.H., Lewis, W.M., Kendall, C. and McGrath, C.C. (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378390.CrossRefGoogle Scholar
Minegawa, M. and Wada, E. (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochimical and Cosmochimical Acta 48, 11351140.CrossRefGoogle Scholar
Murton, B.J. and Van Dover, C. (1993) ALVIN dives on the Broken Spur hydrothermal hydrothermal vent field at 29°10′N on the Mid-Atlantic Ridge. BRIDGE Newsletter 7, 1114.Google Scholar
Nishi, E. (2008) A new species of Spiochaetopterus (Chaetopteridae: Polychaeta) from the Iheya Seamount off Okinawa in East China Sea, Japan. Proceedings of the Biological Society of Washington 121, 289294.CrossRefGoogle Scholar
Peterson, B.J. and Fry, B. (1987) Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293320.CrossRefGoogle Scholar
Ravaux, J., Gaill, F., Le Bris, N., Sarradin, P.M., Jollivet, D. and Shillito, B. (2003) Heat-shock response and temperature resistance in the deep-sea vent shrimp Rimicaris exoculata. Journal of Experimental Biology 206, 23452354.CrossRefGoogle ScholarPubMed
Rona, P.A., Klinkhammer, G., Nelsen, T.A., Trefry, J.H. and Elderfield, H. (1986) Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge. Nature 321, 3337.CrossRefGoogle Scholar
Sagalevitch, A., Bogdanov, Y., Bortnikov, N., Silantyev, S., Galkin, S.V. and Lein, A. (2005) A comparative study of MAR hydrothermal fields found in different geodynamic settings: preliminary results of the 50th cruise (August–September 2005) of R/V Akademik Mstislav Keldysh. InterRidge News 14, 1618.Google Scholar
Schmidt, C., Le Bris, N. and Gaill, F. (2008a) Interactions of deep-sea vent invertebrates with their environment: the case of Rimicaris exoculata. Journal of Shellfish Research 27, 7990.CrossRefGoogle Scholar
Schmidt, C., Vuillemin, R., Le Gall, C., Gaill, F. and Le Bris, N. (2008b) Geochemical energy sources for microbial primary production in the environment of hydrothermal vent shrimps. Marine Chemistry 108, 1831.CrossRefGoogle Scholar
Simeoni, P., Sarrazin, J., Nouze, H., Sarradin, P.M., Ondréas, H., Scalabrin, C. and Sinquin, J.M. (2007) Victor 6000: new high resolution tools for deep sea research. ‘Module de Mesures en Route'. In Oceans'07 Marine Challenges: Coastlines to Deep Sea. Aberdeen: Scottish Enterprise, p.6.Google Scholar
Stecher, J., Turkay, M. and Borowski, C. (2002) Faunal assemblages on the Pacific Antarctic Ridge near the Foundation Seamount Chain (37 degree 30′S, 110 degree 30′W). Cahiers de Biologie Marine 43, 271274.Google Scholar
Van Dover, C.L. (2002) Community structure of mussel beds at deep-sea hydrothermal vents. Marine Ecology Progress Series 230, 137158.CrossRefGoogle Scholar
Van Dover, C.L. (2003) Variation in community structure within hydrothermal vent mussel beds of the East Pacific Rise. Marine Ecology Progress Series 253, 5566.CrossRefGoogle Scholar
Van Dover, C.L. and Doerries, M.B. (2005) Community structure in mussel beds at Logatchev hydrothermal vents and a comparison of macrofaunal species richness on slow- and fast-spreading id-ocean ridges. Marine Ecology 26, 110120.CrossRefGoogle Scholar
Van Dover, C.L., German, C.R., Speer, K.G., Parson, L.M. and Vrijenhoek, R.C. (2002) Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295, 12531257.CrossRefGoogle ScholarPubMed
Van Dover, C.L., Polz, M., Robinson, J., Cavanaugh, C.M., Kadko, D. and Hickey, P. (1997) Predatory anemones at TAG. BRIDGE Newsletter 12, 3334.Google Scholar