Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T07:54:16.323Z Has data issue: false hasContentIssue false

Genetic variation and population structure of Holothuria polii from the eastern and western Mediterranean coasts in Tunisia

Published online by Cambridge University Press:  07 April 2011

Aicha Gharbi*
Affiliation:
Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioressources, UR03ES09, Institut Supérieur de Biotechnologie de Monastir, Tunisie Station de Biologie Marine du Muséum National d'Histoire Naturelle, BP225, 29900 Concarneau, France
Khaled Said
Affiliation:
Unité de Recherche: Génétique, Biodiversité et Valorisation des Bioressources, UR03ES09, Institut Supérieur de Biotechnologie de Monastir, Tunisie
*
Correspondence should be addressed to: A. Gharbi, Station de Biologie Marine du Muséum National d'Histoire Naturelle, BP225, 29900 Concarneau, France emails: [email protected]; [email protected]

Abstract

Seven populations of Holothuria polii were sampled from the eastern and western Mediterranean coastal waters of Tunisia and screened electrophoretically for genetic variation at 11 allozyme loci. Six among the seven polymorphic loci were out of Hardy–Weinberg equilibrium (HWE) in at least one population. In the same way, the multilocus test showed deviation from HWE in all populations. These populations showed heterozygote deficiency. Genetic variability was relatively low. The number of alleles per locus ranged from 2.09 to 2.27 (average = 2.15), and the observed heterozygosity varied between 0.14 and 0.20 (average = 0.17). The observed overall differentiation among populations was slight but significant, with a mean FST value of 0.024 (P < 0.001). Pairwise FST values reflected the differentiation of the two populations, which were at the margins of the range sampled, from all the others. Our data suggest a population structure consistent with separation by Mediterranean Sea basins that might reflect different local biogeographical zones.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnaud-Haond, S., Migliaccio, M., Diaz-Almela, E., Teixeira, S., Van de Vliet, M.S., Alberto, F., Procaccini, G., Duarte, C.M. and Serrao, E.A. (2007) Vicariance patterns in the Mediterranean Sea: east–west cleavage and low dispersal in the endemic seagrass Posidonia oceanica. Journal of Biogeography 34, 963976.CrossRefGoogle Scholar
Avise, J.C. (1994) Molecular markers, natural history and evolution. New York: Chapman and Hall.CrossRefGoogle Scholar
Ayala, F.J., Hedgecok, D., Zumwalt, G.S. and Valentine, J.W. (1973) Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages. Evolution 27, 177191.Google ScholarPubMed
Bahri-Sfar, L., Lemaire, C., Ben Hassine, O.K. and Bonhomme, F. (2000) Fragmentation of sea-bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proceedings of the Royal Society of London, Series B 267, 929935.CrossRefGoogle ScholarPubMed
Ballment, E., Uthicke, S., Peplow, L. and Benzie, J.A.H. (1997) Techniques for enzyme electrophoretic analysis of the holothurians Holothuria atra and Stichopus chloronotus (Holthuridea: Aspidochirota). AIMS Technical Report Series 27, 47 pp.Google Scholar
Battaglene, S.C., Seymour, J.E. and Ramofafia, C. (1999) Survival and growth of cultured juvenile sea cucumbers, Holothuria scabra. Aquaculture 178, 293322.CrossRefGoogle Scholar
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. and Bonhomme, F. (2001) GENETIX ver : 4.03, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II.Google Scholar
Ben Mustapha, K., Hattour, A., Mhetli, M., EL Abed, A. and Tritar, B. (1999) Étude de l'état de la biomasse benthique des étages infra et circa-littoral du golfe de Gabès. Bulletin de l'Institut National des Sciences et Technologie de Mer Salammbô 26, 548.Google Scholar
Ben Slimen, H., Guerbej, H., Ben Othmen, A., Ould Brahim, I., Blel, H., Chatti, N., Elabed, A. and Said, K. (2004) Genetic differentiation between populations of gilthead sea bream (Sparus aurata) along the Tunisian coast. Cybium 28, 4550.Google Scholar
Benzie, J.A.H. (2000) Population genetic structure in penaeid prawns. Aquaculture Research 31, 95119.CrossRefGoogle Scholar
Benzie, J.A.H. and Stoddart, J.A. (1992) Genetic structure of crown-of-thorns Acanthaster planci in Australia. Marine Biology 112, 631639.CrossRefGoogle Scholar
Benzie, J.A.H. and Williams, S.T. (1992) No genetic differentiation of giant clam (Tridacna gigas) populations in the Great Barrier Reef, Australia. Marine Biology 113, 373377.CrossRefGoogle Scholar
Benzie, J.A.H. and Williams, S.T. (1997) Genetic structure of giant clam (Tridacna maxima) populations in the west Pacific is not consistent with dispersal by present-day ocean currents. Evolution 51, 768783.Google Scholar
Bernardi, G., Holbrook, S.J. and Schmitt, R.J. (2001) Gene flow at three spatial scales in a coral reef fish, the three-spot dascyllus, Dascyllus trimaculatus. Marine Biology 138, 457465.CrossRefGoogle Scholar
Bohonak, A.J. (1999) Dispersal, gene flow, and population structure. Quaterly Review of Biology 74, 2145.CrossRefGoogle ScholarPubMed
Borsa, P. (1997) Intraspecific zoogeography of the Mediterranean: population genetic analysis on sixteen Atlanto-Mediterranean species (fishes and invertebrates). Vie et Milieu 47, 295305.Google Scholar
Boudouresque, C.F., Harmelin, J.C. and Grissac, A.J.D. (1986) Le benthos de l'île de Zembra (Parc National, Tunisie). Marseille : Unep-Iucn-Rac/Spa. Edit., Gis Posidonie publ., 124125.Google Scholar
Bruun, A.F. (1940) Etudes quantitatives sur la faune du lac de Tunis et du golfe de Tunis dans la région de Salammbô. Bulletin de la Station Océanographique de Salammbô 40, 120.Google Scholar
Buroker, N.E., Hershberger, W.K. and Chew, K.K. (1975) Genetic variation in the Pacific oyster, Crassostrea gigas. Journal of the Fisheries Research Board of Canada 32, 24712477.CrossRefGoogle Scholar
Burton, R.S. and Feldman, M.W. (1982) Population genetics of coastal and estuarine invertebrates: does larval behavior influence population structure? In Kennedy, V.S. (ed.) Estuarine comparisons. New York: Academic Press, pp. 537551.CrossRefGoogle Scholar
Carvalho, G.R. (1993) Evolutionary aspects of fish distribution: genetic variability and adaptation. Journal of Fish Biology 43, 5373.CrossRefGoogle Scholar
Chenoweth, S.F., Hughes, J.M., Keenan, C.P. and Lavery, S. (1998) Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Journal of Heredity 80, 187197.CrossRefGoogle Scholar
Cherbonnier, G. (1956) Les Echinodermes de Tunisie. Bulletin de l'Institut National des Sciences et Technologie de la Mer Salammbô 53, 122.Google Scholar
Doherty, P.J., Planes, S. and Mather, P. (1995) Gene flow and larval distribution in seven species of fish from the GBR. Ecology 76, 23732391.CrossRefGoogle Scholar
Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package), Ver: 3.5 C. University of Washington, Seattle, USA.Google Scholar
Ferguson, A. (1980) Biochemical statistics and evolution. New York: Blackie and Son Ltd.Google Scholar
Futuyma, D.J. (1986) Evolutionary biology. Sunderland, MA: Sinauer Associates.Google ScholarPubMed
Gyllensten, U. (1985) The genetic structure of fish: differences in the intraspecific distribution of biochemical genetic variation between marine, anadromous, and freshwater species. Journal of Fish Biology 26, 691699.CrossRefGoogle Scholar
Hare, M.P., Karl, S.A. and Avise, J.C. (1996) Anonymous nuclear DNA markers in the American oyster and their implications for the heterozygote deficiency phenomenon in marine bivalves. Molecular Biology and Evolution 13, 334345.CrossRefGoogle ScholarPubMed
Hartl, D.L. (1988) A primer of population genetics. Sunderland, MA: Sinauer Associates.Google Scholar
Huang, B.X., Peakall, R. and Hanna, P.J. (2000) Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite, and microsatellite markers. Marine Biology 136, 207216.CrossRefGoogle Scholar
Hunt, A. (1993) Effect of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patieriella calcar and P. exigua. Marine Ecology Progress Series 92, 179186.CrossRefGoogle Scholar
Johnson, M.S. and Black, R. (1995) Neighbourhood size and the importance of barriers to gene flow in an intertidal snail. Journal of Heredity 75, 142154.CrossRefGoogle Scholar
Koehn, R.K., Newell, R.I.E. and Immermann, F. (1980) Maintenance of an aminopeptidase allele frequency cline by natural selection. Proceedings of the National Academy of Sciences of the United States of America 77, 53855389.CrossRefGoogle ScholarPubMed
Mallet, A.L., Zourous, E., Gartner-Kepkey, K.E., Freeman, K.R. and Dickie, L.M. (1985) Larval viability and heterozygote deficiency in populations of marine bivalves: evidence from pair mating of mussels. Marine Biology 87, 165172.CrossRefGoogle Scholar
Mamuris, Z., Stamatis, C. and Triantaphyllidis, C. (1999) Intraspecific genetic variation of striped red mullet (Mullus surmuletus L.) in the Mediterranean Sea assessed by allozyme and random amplified polymorphic DNA (RAPD) analysis. Journal of Heredity 83, 3038.CrossRefGoogle ScholarPubMed
Mantel, N. (1967) The detection of disease clustering and generalized regression approach. Cancer Research 27, 209220.Google ScholarPubMed
Martinez, P.C. and Richmond, T. (1998) Effects of diet on growth and larval development of the sea cucumber Holothuria nobilis in Guam. In Mooi, R. and Telford, M. (eds) Echinoderms. San Francisco: Proceedings of the 9th International Echinoderm Conference. Rotterdam: A.A. Balkema, p. 480.Google Scholar
Nei, M. (1972) Genetic distance between populations. American Naturalist 106, 283291.CrossRefGoogle Scholar
Nikula, R. and Vainola, R. (2003) Phylogeography of Cerastoderma glaucum (Bivalvia: Cardiidae) across Europe: a major break in the Eastern Mediterranean. Marine Biology 143, 339350.CrossRefGoogle Scholar
Palumbi, S.R. (1992) Marine speciation on a small planet. Trends in Ecology and Evolution 7, 114118.CrossRefGoogle ScholarPubMed
Palumbi, S.R. (1994) Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics 25, 547572.CrossRefGoogle Scholar
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J. and Britton-Davidian, J. (1986) Manuel d'électrophorèse appliquée à la génétique des populations. Paris: Editions techniques et documentation, Lavoisier (Eds), 217 pp.Google Scholar
Pinardi, N. and Masetti, E. (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 158, 153173.CrossRefGoogle Scholar
Powers, D.A., Lauerman, T., Crawford, D. and DiMichele, L. (1991) Genetic mechanisms for adapting to a changing environment. Annual Review of Genetics 25, 629659.CrossRefGoogle ScholarPubMed
Quesada, H., Beynon, C.M. and Skibinski, D.O.F. (1995) A mitochondrial DNA discontinuity in the mussel Mytilus galloprovincialis Lmk: Pleistocene vicariance biogeography and secondary intergradation. Molecular Biology and Evolution 12, 521524.Google Scholar
Raymond, M. and Rousset, F. (2003) Updated version of GENEPOP (v. 1.2) described in Raymond M & Rousset F 1995 (2003) GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Rebordinos, L. and Cross, I. (1999) The use of genetic markers in the study of marine natural populations. Boletin Instituto Español de Oceanografia 15, 363372.Google Scholar
Riginos, C. and Nachman, M.W. (2001) Population subdivision in marine environments: the contributions of biogeography, geographical distance and discontinuous habitat to genetic differentiation in a blennioid fish, Axoclinus nigricaudus. Molecular Ecology 10, 14391453.CrossRefGoogle Scholar
Rocha-Olivares, A. and Vetter, R.D. (1999) Effects of oceanographic circulation on the gene flow, genetic structure, and phylogeography of the rosethorn rockfish (Sebastes helromaculatus). Canadian Journal of Fisheries and Aquatic Sciences 56, 803813.CrossRefGoogle Scholar
Schmidt, P.S. and Rand, D.M. (1999) Intertidal microhabitat and selection at MPI: interlocus contrasts in the northern acorn barnacle, Semibalanus balanoides. Evolution 53, 135146.Google ScholarPubMed
Stancyk, S.E. and Feller, R.J. (1986) Transport of non-decapod invertebrate larvae in estuaries: an overview. Bulletin of Marine Science 39, 257268.Google Scholar
Thiede, J. (1978) A glacial Mediterranean. Nature 276, 680683.CrossRefGoogle Scholar
Thorpe, J.P., Solé-Cava, A.M. and Watts, P.C. (2000) Exploited marine invertebrates: genetics and fisheries. Hydrobiologia 420, 165184.CrossRefGoogle Scholar
Tortonèse, E. (1987) Classe des Holothuries. In Fisher, W., Schneider, M. and Bauchot, M.L. (eds) Fiche FAO d'identification des espèces pour les besoins de la pêche, Méditerranée et mer noire 1, pp. 731739.Google Scholar
Tracey, M.L., Bellet, N.F. and Gravem, C.D. (1975) Excess allozyme homozygosity and breeding population structure in the mussel Mytilus californianus. Marine Biology 32, 303311.CrossRefGoogle Scholar
Uthicke, S. and Benzie, J.A.H. (2000) Allozymes electrophoresis indicates high gene flow between populations of Holothria (Michrothele) nobilis (Holothuroidea: Aspidochirotida) on the Great Barrier Reef. Marine Biology 137, 819825.CrossRefGoogle Scholar
Uthicke, S. and Benzie, J.A.H. (2001) Restricted gene flow between Holothuria scabra (Echinodermata: Holothuroidea) populations along the north-east coast of Australia and the Solomon Islands. Marine Ecology Progress Series 216, 109117.CrossRefGoogle Scholar
Uthicke, S. and Benzie, J.A.H. (2003) Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis populations from the Indo-Pacific. Molecular Ecology 12, 26352648.CrossRefGoogle ScholarPubMed
Vergara-Chen, C., González-Wangüemert, M., Marcos, C. and Pérez-Ruzafa, A. (2010) Genetic diversity and connectivity remain high in Holothuria polii (Delle Chiaje 1823) across a coastal lagoon–open sea environmental gradient. Genetica 138, 895906.CrossRefGoogle ScholarPubMed
Waples, R.S. (1987) A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41, 385400.CrossRefGoogle Scholar
Ward, R.D. (1990) Biochemical genetic variation in the genus Littorina (Prosobranchia: Mollusca). Hydrobiologia 193, 5369.CrossRefGoogle Scholar
Weir, B.S. and Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Wright, S. (1978) Variability within and among natural populations. In Evolution and the genetics of populations, Volume IV. Chicago: University of Chicago Press, pp. 242322.Google Scholar
Zitari-Chatti, R., Chatti, N., Elouaer, A. and Said, K. (2008) Genetic variation and population structure of the caramote prawn Penaeus kerathurus from the eastern and western Mediterranean coasts in Tunisia. Aquaculture Research 39, 7076.CrossRefGoogle Scholar
Zitari-Chatti, R., Chatti, N., Fulgione, D., Caiazza, I., Aprea, G., El Ouaer, A., Said, K. and Capriglione, T. (2009) Mitochondrial DNA variation in the caramote prawn Penaeus kerathurus across a transition zone in the Mediterranean Sea. Genetica 136, 439447.CrossRefGoogle ScholarPubMed
Zouros, E. and Foltz, D.F. (1984) Minimal selection requirements for the correlation between heterozygosity and growth and for the deficiency of heterozygotes, in oyster populations. Developmental Genetics 4, 393405.CrossRefGoogle Scholar
Zouros, E., Singh, S.M., Foltz, D.W. and Mallet, A.L. (1983) Post-settlement viability in the American oyster (Crassostrea virginica): an overdominant phenotype. Genetical Research 41, 259270.CrossRefGoogle Scholar