Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T17:03:07.217Z Has data issue: false hasContentIssue false

Food sources of common dolphinfish (Coryphaena hippurus) based on stomach content and stable isotopes analyses

Published online by Cambridge University Press:  17 December 2014

A. Tripp-Valdez
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, IPN, Av. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, La Paz B.C.S. 23096, México
F. Galván-Magaña*
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, IPN, Av. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, La Paz B.C.S. 23096, México
S. Ortega-García
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, IPN, Av. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, La Paz B.C.S. 23096, México
*
Correspondence should be addressed to: F. Galván-Magaña, Centro Interdisciplinario de Ciencias Marinas, IPN, Av. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, La Paz B.C.S. 23096, México email: [email protected]

Abstract

Dolphinfish (Mahimahi) are a high-demand resource for sport and coastal fisheries, mainly in the Pacific Ocean. Due to their economic and ecological importance, studies of their biology are very important to understand their function in ecosystems. We used stable isotope and stomach content analyses to determine the most important prey of the common dolphinfish, as well as the trophic level of this species in two areas of the southern Gulf of California. Stomach contents of 445 specimens were analysed. Using both techniques, we found that the most important prey for dolphinfish in the southern Gulf of California were three invertebrate species followed by fish. This contrasts with results from other authors who found that this species was mainly piscivorous in other locations. Stomach content analysis indicated differences in prey biomass by area, season and size class. The isotopic analysis did not show significant differences between seasons or sexes. Both stomach contents and stable isotope analyses showed that although this predator consumed a wide prey spectrum, only a few prey items made up the bulk of the diet, which resulted in a low SD in δ15N values and low Levin's index values. We conclude that this fish is an opportunistic predator that may consume a wide prey spectrum, but that it mainly consumes prey that are abundant in the area, such as crustaceans and cephalopods in the Gulf of California.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abitia-Cardenas, L.A., Galván-Magaña, F. and Rodriguez-Romero, J. (1997) Food habits and energy values of prey of striped marlin, Tetrapturus audax, off the coast of Mexico. Fishery Bulletin 95, 360368.Google Scholar
Aguilar-Palomino, B., Galván-Magaña, F., Abitia-Cardenas, L.A., Muhlia-Melo, A.F. and Rodriguez-Romero, J. (1998) Aspectos alimentarios del dorado Coryphaena hippurus Linnaeus, 1758 en Cabo San Lucas, Baja California Sur, México. Ciencias Marinas 24, 253265.Google Scholar
Allen, G.R. and Robertson, D.R. (1994) Fishes of the tropical eastern Pacific. Honolulu, HI: University of Hawaii Press.Google Scholar
Alvarez-Borrego, B.S. (1983) Gulf of California. In Ketchum, B.H. (ed.) Ecosystems of the world. Volume 26, Estuaries and Enclosed Seas. New York, NY: Elsevier, pp. 427449.Google Scholar
Assis, C.A. (1996) A generalized index for stomach contents analysis in fish. Scientia Marina 60, 385389.Google Scholar
Aurioles-Gamboa, D. (1995) Distribución y abundancia de la langostilla bentónica (Pleuroncodes planipes) en la plataforma continental de la costa oeste de Baja California. In Aurioles-Gamboa, D. and Balart, E. (eds) La langostilla: biología, ecología y aprovechamiento. México: CIBNOR, pp. 5978.Google Scholar
Campos, J.A., Segura, A., Lizano, O. and Madrigal, E. (1993) Ecología básica de Coryphaena hippurus (Pisces: Coryphaenidae) y abundancia de otros grandes pelágicos en el Pacífico de Costa Rica. Revista de Biología Tropical 41, 783790.Google Scholar
Chipps, S. and Garvey, J. (2006) Assessment of food habits and feeding patterns. In Guy, C.S. and Brown, M. (eds) Analysis and interpretation of freshwater fisheries data. Bethesda, MD: American Fisheries Society, pp. 472514.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth: PRIMER-E.Google Scholar
Clarke, L.R., Vidergar, D.T. and Bennett, D.H. (2005) Stable isotopes and gut content show diet overlap among native and introduced piscivores in a large oligotrophic lake. Ecology of Freshwater Fish 14, 267277.Google Scholar
Clarke, M.R. (1986) A handbook for the identification of cephalopod beaks. Oxford: Clarendon Press.Google Scholar
Clothier, C.R. (1950) A key to some Southern California fishes based on vertebral characters. Fisheries Bulletin 79, 183.Google Scholar
Cortés, E. (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 726738.Google Scholar
Dufour, E. and Gerdeaux, D. (2001) Apport des isotopes stables (13C/12C, 15N/14N, 18O/16O, 36S/34S, 87Sr/86Sr) aux études écologiques sur les poissons. Cybium 25, 369382.Google Scholar
Ehrhardt, N.M., Solís, N.A., Jacquemin, P.S., Ortiz, C.J., Ulloa, R.P., González, D.G. and García, B.F. (1986) Análisis de la biología y condiciones del stock del calamar gigante Dosidicus gigas en el Golfo de California, México, durante 1980. Ciencias Pesquera 5, 6376.Google Scholar
Erhardt, E.B. (2007) SISUS: Stable Isotope Sourcing using Sampling. http://statacumen.com/sisus/.Google Scholar
Eschmeyer, W.N., Herald, E.S. and Hammann, H. (1983) A field guide to Pacific coast fishes of North America. Boston, MA: Houghton Mifflin.Google Scholar
Fischer, W., Krupp, F., Schneider, W., Sommer, C. and Carpenter, K. (1995) Guía FAO para la identificación de especies para los fines de pesca. Pacífico centro-oriental. Rome: FAO.Google Scholar
Gearing, I.N. (1991) The study of diet and trophic relationships through natural abundance 13C. In Coleman, D.C. and Fry, B. (eds) Carbon isotope techniques. San Diego, CA: Academic Press, pp. 201216.Google Scholar
Gibbs, R.H. and Collete, B.B. (1959) On the identification, distribution and biology of the dolphins Coryphaena hippurus and C. equiselis. Bulletin of Marine Science of the Gulf and Caribbean 9, 117152.Google Scholar
Hida, T.S. (1973) Food of tunas and dolphins (Pisces: Scombridae and Coryphaenidae) with emphasis on the distribution and biology of their prey Stolephorus buccaneeri (Engraulidae). Fishery Bulletin 71, 135143.Google Scholar
Hyslop, E.J. (1980) Stomach content analysis a review of methods and their application. Journal of Fish Biology 17, 411429.Google Scholar
Iverson, L.K. and Pinkas, L. (1971) A pictorial guide to beak of certain eastern Pacific cephalopods. California Fish and Game 2, 83105.Google Scholar
Kelly, D.J., Robertson, A., Murphy, D., Fitzsimons, T., Costello, E., Gormley, E., Corner, L. and Marples, N.M. (2012) Trophic enrichment factors for blood serum in the European badger (Meles meles). PLoS ONE 7, e53071.Google Scholar
Kojima, S. (1966) Studies on fishing conditions of the dolphin Coryphaena hippurus L. in the western Japan Sea, comparison of juvenile fish fauna in the sea and in contents of dolphin. Bulletin of the Japanese Society for the Science of Fish 29, 507513.Google Scholar
Krebs, C.J. (1999) Ecological methodology. New York, NY: Harper Collins.Google Scholar
Laptikhovsky, V. and Salman, A. (2003) On reproductive strategies of the epipelagic octopods of the superfamily Argonautoidea (Cephalopoda: Octopoda). Marine Biology 142, 321326.Google Scholar
Lasso, J. and Zapata, L. (1999) Fisheries and biology of Coryphaena hippurus (Pisces: Coryphaenidae) in the Pacific coast of Colombia and Panama. Scientia Marina 63, 387399.Google Scholar
Manooch, C.S., Mason, D.L. and Nelson, R.S. (1983) Food and gastrointestinal parasites of dolphin, Coryphaena hippurus, collected along the southeastern and gulf coasts of the United States. U.S. Department of Commerce, NOAA Technical Memorandum NMFS- SEFC 124, 36 pp.Google Scholar
Miller, J.D. and Lea, R.N. (1972) Guide to the coastal marine fishes of California. California Department of Fish and Game Fisheries Bulletin 157, 1235.Google Scholar
Minagawa, M. and Wada, E. (1984) Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 11351140.Google Scholar
Norton, J.G. (1999) Apparent habitat extensions of dolphinfish (Coryphaena hippurus) in response to climate transients in the Californian current. Scientia Marina 63, 239260.Google Scholar
Olson, R.J. and Galván-Magaña, F. (2002) Food habits and consumption rates of common dolphinfish (Coryphaena hippurus) in the eastern Pacific Ocean. Fishery Bulletin 100, 279298.Google Scholar
Oxenford, H.A. and Hunte, W. (1999) Feeding habits of the dolphinfish (Coryphaena hippurus) in the eastern Caribbean. Scientia Marina 63, 303315.Google Scholar
Palko, B.J., Beardsley, G.L. and Richards, W.J. (1982) Synopsis of the biological data on dolphin-fishes, Coryphaena hippurus Linnaeus and Coryphaena equiselis Linnaeus. U.S. Department of Commerce, NOAA Technical Memorandum NMFS Circular 443:1–28.Google Scholar
Paré, J.R.J., Bélanger, M.R. and Stafford, S.S. (1994) Microwave-Assisted Process (MAPTM): a new tool for the analytical laboratory. Trends in Analytical Chemistry 13, 176184.Google Scholar
Park, R. and Epstein, S. (1961) Metabolic fractionation of C13 and C12 in plants. Plant Physiology 36, 133138.Google Scholar
Pauly, D., Christensen, V., Froese, R. and Palomares, M.L. (2000) Fishing down aquatic food webs. American Scientist 88, 4651.Google Scholar
Post, D.M. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703718.Google Scholar
Post, D., Layman, M.C.A., Arrington, D.A., Takimoto, G., Quattrochi, J. and Montana, C.G. (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179189.Google Scholar
Preti, A., Smith, S. and Ramon, D. (2001) Feeding habits of the common thresher shark (Alopias vulpinus) sampled from the California-based drift gill net fishery, 1998–1999. CalCOFI Reports 42, 145152.Google Scholar
Preti, A., Smith, S. and Ramon, D. (2004) Diet differences in the thresher shark (Alopias vulpinus) during transition from a warm–water regime to a cool–water regime off California–Oregon, 1998–2000. California Cooperative Oceanic Fisheries Investigations Reports 45, 19982000.Google Scholar
Renoe, B.W. (1994) Microwave assisted extraction. Technology, CEM Corporation American Laboratory, 3439.Google Scholar
R Development Core Team (2011) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/.Google Scholar
Rose, C.D. and Hassler, W.W. (1974) Food habits and sex ratios of dolphin Coryphaena hippurus captured in the western Atlantic Ocean off Hattera, North Carolina. Transactions of the American Fisheries Society 103, 94100.Google Scholar
Rothschild, B.J. (1964) Observations on dolphins (Coryphaena spp.) in the Central Pacific Ocean. Copeia 1964, 445447.Google Scholar
Saucedo-Barrón, C.J. (1990) Aspectos de la alimentación del dorado Coryphaena hippurus, frente a las costas de Sinaloa. Memorias del VII congreso de Oceanografía, Mazatlán, Sinaloa, México, 1990.Google Scholar
Tester, A.L. and Nakamura, E.L. (1957) Catch rate, size, sex and food of tunas and other pelagic fishes taken by trolling off Oahu, Hawaii, 1951–55. U.S. Fish and Wildlife Service Special Scientific Report Fisheries 250, 25.Google Scholar
Thomson, D., Findley, L. and Kerstich, A. (2000) Reef fishes of the Sea of Cortez. The rocky-shore fishes of the Gulf of California. Austin, TX: University of Texas Press.Google Scholar
Torres-Rojas, Y.E., Hernández-Herrera, A., Ortega-García, S. and Soto-Jiménez, M.F. (2014) Feeding habits variability and trophic position of dolphinfish in waters south of the Baja California Peninsula, Mexico. Transactions of the American Fisheries Society 143, 528542.Google Scholar
Tripp-Valdez, A., Galván-Magaña, F. and Ortega-García, S. (2010) Feeding habits of dolphinfish (Coryphaena hippurus) in the southeastern Gulf of California, Mexico. Journal of Applied Ichthyology 26, 578582.Google Scholar
Varghese, S.P., Somvanshi, V.S., John, M.E. and Dalvi, R.S. (2013) Diet and consumption rates of common dolphinfish, Coryphaena hippurus, in the eastern Arabian Sea. Journal of Applied Ichthyology 29, 10221029.Google Scholar
Velasco-Tarelo, P.M. (2003) Hábitos alimenticios del dorado, Coryphaena hippurus, Linnaeus 1758. (Osteichtyes: Coryphaenidae), capturado en Punta Lobos y Los Barriles Baja California Sur, México, durante 2000 y 2001. Bachelor thesis, Universidad Autónoma de Baja California Sur, México.Google Scholar
Wolff, C.A. (1984) Identification and estimation of size from the beaks of eighteen species of cephalopods from the Pacific Ocean. NOAA Technical Report NMFS 17, 1–50.Google Scholar
Zúñiga-Flores, M.S., Ortega-Garcia, S. and Klett-Traulsen, A. (2008) Interannual and seasonal variation of dolphinfish (Coryphaena hippurus) catch rates in the southern Gulf of California, Mexico. Fisheries Research 94, 1317.Google Scholar