Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T23:36:01.741Z Has data issue: false hasContentIssue false

Fine Structure of the Gills of Jaera Nordmanni (Rathke) [Crustacea, Isopoda]

Published online by Cambridge University Press:  11 May 2009

A. Bubel
Affiliation:
Portsmouth Polytechnic, Marine Laboratory, Ferry Road, Hayling Island, Hants., England
M. B. Jones
Affiliation:
Department of Marine Biology, University of Liverpool, Port Erin, Isle of Man

Extract

The isopod genus Jaera Leach (Crustacea) is a common component of the fauna in estuaries (Green, 1968; Jones & Naylor, 1971; Naylor, 1972; Jones, 1974). The members of this genus are able to survive low salinity (Jones, 1972a; Harvey, Jones & Naylor, 1973) by active control of the osmotic concentration of the body fluids above that of the external environment (Jones, 1972&; Forbes, 1974). While it has been well established that the crustacean gill is the site of the transport system involved in osmoregulation (Koch, 1954; Shaw, i960; Bielawski, 1964; Croghan, Curra & Lockwood, 1965; Quinn & Lane, 1966), there have been few studies on the fine structure of this organ (Copeland, 1968; Copeland & Fitzjarrell, 1968; Bielawski, 1971; Fisher, 1972; Talbot, Clark & Lawrence, 1972; Lockwood, Inman & Courtenay, 1973). The present paper describes the structure of the gills of Jaera nordmanni (Rathke) and relates the role of the various elements observed to the physiological functioning of the gill.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bielawski, J., 1964. Chloride transport and water intake into isolated gills of crayfish. Comparative Biochemistry and Physiology, 13, 423–32.CrossRefGoogle ScholarPubMed
Bielawski, J., 1971. Ultrastructure and ion transport in gill epithelium of the crayfish, Astacus leptodactylus Esch. Protoplasma, 73, 177–90.CrossRefGoogle ScholarPubMed
Bryan, G. W., 1960 a. Sodium regulation in the crayfish, Astacus fluviatilis. I. The normal animal. Journal of Experimental Biology, 37, 8399.CrossRefGoogle Scholar
Bryan, G. W., 1960 b. Sodium regulation in the crayfish, Astacus fluviatilis. II. Experiments with sodium-depleted animals. Journal of Experimental Biology, 37, 100–28.CrossRefGoogle Scholar
Bubel, A., 1973. An electron microscope investigation into the cuticle and associated tissues of the operculum of some marine serpulids. Marine Biology, 23, 147–64.CrossRefGoogle Scholar
Copeland, D. E., 1968. Fine structure of salt and water uptake in the land-crab, Gecarcinus lateralis. American Zoologist, 8, 417–32.CrossRefGoogle Scholar
Copeland, D. E. & Fitzjarrell, A. T., 1968. The salt absorbing cells in the gills of the blue crab (Callinectes sapidus Rathbun) with notes on modified mitochondria. Zeitschrift fur Zellforschung und mikroskopische Anatomie, 92, 122.CrossRefGoogle ScholarPubMed
Croghan, P. C., Curra, R. A. & Lockwood, A. P. M., 1965. The electrical potential difference across the epithelium of isolated gills of the crayfish Austropotamobius pallipes (Lereboullet). Journal of Experimental Biology, 42, 463–74.CrossRefGoogle ScholarPubMed
Evans, P. D., 1972. The free amino acid pool of the haemocytes of Carcinus maenas (L.). Journal of Experimental Biology, 56, 501–7.CrossRefGoogle ScholarPubMed
Fisher, J. M., 1972. Fine-structural observations on the gill filaments of the freshwater crayfish, Astacus pallipes Lereboullet. Tissue and Cell, 4, 287–99.CrossRefGoogle Scholar
Forbes, A. T., 1974. Osmotic and sodium regulation in Jaera albifrons Leach (Crustacea: Isopoda). Comparative Biochemistry and Physiology, 47A, 109–16.Google Scholar
Green, J., 1968. The Biology of Estuarine Animals. 401 pp. London: Sidgwick and Jackson.Google Scholar
Harvey, C. E., Jones, M. B. & Naylor, E., 1973. Some factors affecting the distribution of estuarine isopods (Crustacea). Estuarine and Coastal Marine Science, 1, 113–24.CrossRefGoogle Scholar
Harris, R. R., 1970. Sodium uptake in the isopod Sphaeroma rugicauda Leach during acclimatization to high and low salinities. Comparative Biochemistry and Physiology, 32, 763–73.CrossRefGoogle Scholar
Harris, R. R., 1972. Aspects of sodium regulation in brackish water and marine species of the isopod genus Sphaeroma. Marine Biology, 13, 1827.CrossRefGoogle Scholar
Holdich, D. M. & Ratcliffe, N. A., 1970. A light and electron microscope study of the hind gut of the herbivorous isopod Dynamene bidentata (Crustacea: Peracarida). Zeitschrift fur Zellforschung und mikroskopische Anatomie, 3, 209–27.CrossRefGoogle Scholar
Johnstone, M. A., Elder, H. Y., Davis, S. P., 1973. Cytology of Carcinus haemocytes and their function in carbohydrate metabolism. Comparative Biochemistry and Physiology, 46A, 569–81.CrossRefGoogle Scholar
Jones, M. B., 1972 a. Effects of salinity on the survival of the Jaera albifrons Leach group of species (Crustacea: Isopoda). Journal of Experimental Marine Biology and Ecology, 9, 231–7.CrossRefGoogle Scholar
Jones, M. B., 1972 b. Osmoregulation in the Jaera albifrons group of species (Isopoda, Asellota). Journal of the Marine Biological Association of the United Kingdom, 52, 419–27.CrossRefGoogle Scholar
Jones, M. B., 1974. Breeding biology and seasonal population changes of Jaera nordmanni nordica Lemercier (Isopoda, Asellota). Journal of the Marine Biological Association of the United Kingdom (in the Press).CrossRefGoogle Scholar
Jones, M. B. & Fordy, M. R., 1971. A stereoscan electron microscope study of male reproductive characters in the Jaera albifrons group of species. Marine Biology, 10, 265–71.CrossRefGoogle Scholar
Jones, M. B. & Naylor, E., 1971. Breeding and bionomics of the British members of the Jaera albifrons group of species (Isopoda: Asellota). Journal of Zoology, 165, 183–99.CrossRefGoogle Scholar
Koch, H. J., 1954. Cholinesterase and active transport of sodium chloride through isolated gills of the crab Eriocheir sinensis (M. Edw.). In Recent Developments in Cell Physiology, ed. Kitching, J. A., 15 pp. London-New York: Academic Press.Google Scholar
Lockwood, A. P. M., Inman, C. B. E. & Courtenay, T. H., 1973. The influence of environ-mental salinity on the water fluxes of the amphipod crustacean Gammarus duebeni. Journal of Experimental Biology, 58, 137–48.CrossRefGoogle Scholar
Mclusky, D. S., 1968. Aspects of osmotic and ionic regulation in Corophium volutator (Pallas). Journal of the Marine Biological Association of the United Kingdom, 48, 769–81.CrossRefGoogle Scholar
Naylor, E., 1972. British Marine Isopods, Synopses of British Fauna (New Series). The Linnean Society 3, 186. London and New York: Academic Press.Google Scholar
Quinn, D. J. & Lane, C. E., 1966. Ionic regulation and Na K stimulated ATPase activity in the land crab, Cardisoma guanhumi. Comparative Biochemistry and Physiology, 19, 533–43.CrossRefGoogle Scholar
Stang-Voss, C., 1971. Zur Ultrastrukture der Blut zellen werbelloser. Tiera V. Uber die Hemocyten von Astacus astacus (L.) (Crustacea). Zeitschrift fur Zellforschung und mikroskopische Anatomie, 122, 6875.CrossRefGoogle Scholar
Shaw, J., 1960. The absorption of chloride ions by the crayfish, Astacus pallipes (Lereboullet). Journal of Experimental Biology, 37, 557–72.CrossRefGoogle Scholar
Talbot, P., Clark, W. H. Jr. & Lawrence, A. L., 1972. Light and electron microscope studies on osmoregulatory tissue in the developing brown shrimp, Penaeus aztecus. Tissue and Cell, 4, 271–86.CrossRefGoogle ScholarPubMed