Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T09:37:04.804Z Has data issue: false hasContentIssue false

Fatty-acid synthesis in the echinoderms: Asterias rubens, Echinus esculentus and Holothuria forskali

Published online by Cambridge University Press:  11 May 2009

W. V. Allen
Affiliation:
Biological Sciences, Humboldt State College, Arcata, California

Extract

The fatty-acid compositions of tissue lipids of Asterias rubens L., Echinus esculentus L. and Holothuria forskali Delia Chiaje were determined by means of gas-liquid chromatography. Considerable proportions of branched-chain, normal odd-numbered and eicosatetraenoic acids occur in the latter two animals. Tissues of all three animals were incubated with 1−14C-acetate. The relative specific activities of fatty-acid fractions isolated by thin-layer chromatography upon AgNO3-impregnated silica gel G fell in the order: saturates > monoenes — dienes > polyenes. The fatty-acid compositions of the alkoxydiglyceride, triglyceride and phospholipid classes of A. rubens hepatic caecal lipid were also determined.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackman, R. G. & Sipos, J. C., 1965. Isolation of the saturated fatty acids of some marine lipids with particular reference to normal odd-numbered fatty acids and branched-chain fatty acids. Comp. Biochem. Physiol., Vol. 15, pp. 445–56.CrossRefGoogle ScholarPubMed
Allen, W. V. & Giese, A. C., 1966. An in vitro study of lipogenesis in the sea star, Pisaster ochraceus. Comp. Biochem. Physiol., Vol. 17, pp. 2338.CrossRefGoogle Scholar
Bartlett, G. R., 1959. Phosphorus assay in column chromatography. J. biol. Chem., Vol. 234, pp. 466–8.CrossRefGoogle ScholarPubMed
Chuecas, L. & Riley, J. P., 1966. The component fatty acids of some sea-weed fats. J. mar. biol. Ass. U.K., Vol. 46, pp. 153–60.CrossRefGoogle Scholar
Farmanfarmaian, A., Giese, A. C., Boolootain, R. A. & Bennett, J., 1958. Annual reproductive cycles in four species of west coast starfishes. J. exp. Zool., Vol. 138, pp. 355–67.CrossRefGoogle Scholar
Farquhar, J. W., Insull, W. Jr., Rosen, P., Stoffel, W. & Ahrens, E. H. Jr., 1959. The analysis of fatty acid mixtures by gas-liquid chromatography. Nutr. Rev., Vol. 17 (supplement), pp. 130.Google ScholarPubMed
Folch, J., Lees, M., & Sloane-Stanley, G. H., 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. biol. Chem., Vol. 226, pp. 497509.CrossRefGoogle ScholarPubMed
Gilbertson, J. R. & Karnovsky, M. L., 1963. Nonphosphatide fatty acyl esters of alkenyl and alkyl ethers of glycerol. J. biol. Chem., Vol. 238, pp. 893–7.CrossRefGoogle ScholarPubMed
Goodridge, A. G., 1964. The effect of insulin, glucagon, and prolactin on lipid synthesis and related metabolic activity in migratory and non-migratory finches. Comp. Biochem. Physiol., Vol. 13, pp. 126.CrossRefGoogle ScholarPubMed
Karnovsky, M. L. & Brumm, A. F., 1955. Naturally occurring a-glycerol ethers. J. biol. Chem., Vol. 216, pp. 689701.CrossRefGoogle Scholar
Lovern, J. A., 1964. The lipids of marine organisms. Oceanogr. mar. Biol. Ann. Rev., edited by H., Barnes. George Allen and Unwin Ltd., London, Vol. 2, pp. 169191.Google Scholar
Masoro, E. J., 1962. Biochemical mechanisms related to the homeostatic regulation of lipogenesis in animals. J. Lipid Res., Vol. 3, pp. 149–64.CrossRefGoogle Scholar
Mead, J. F., 1961. Synthesis and metabolism of poly-unsaturated acids. Fedn Proc, Vol. 20, pp. 952–55.Google Scholar
Morris, L. J., 1964. Specific separations by chromatography on impregnated thin layers. Lab. Practice, Vol. 13, pp. 284–89.Google Scholar
Rodegker, W. & Nevenzel, J. C., 1964. The fatty acid composition of three marine invertebrates. Comp. Biochem. Physiol., Vol. 11, pp. 5360.CrossRefGoogle ScholarPubMed
Skidmore, W. D. & Entenman, C., 1962. The determination of esterified fatty acids in glycerides, cholesterol esters, and phosphatides. J. Lipid Res., Vol. 3, pp. 356–63.CrossRefGoogle Scholar
Smits, P., 1959. Micro-determination of the iodine-value. Rec. Trav. chim. des PaysBas, Vol. 78, pp. 713–23.CrossRefGoogle Scholar
Stoffel, W., Chu, F. & Ahrens, E. H., 1959. Analysis of long chain fatty acids by gas-liquid chromatography: micromethod for preparation of methyl esters. Anal. Chem., Vol. 31, pp. 307–8.CrossRefGoogle Scholar
Welsh, J. H. & Smith, R. I., 1960. Laboratory Exercises in Invertebrate Physiology. 179 pp., Burgess.Google Scholar
Wilson, S. & Falkmer, S., 1965. Starfish insulin. Can. J. Biochem., Vol. 43, pp. 1615–24.CrossRefGoogle ScholarPubMed
Vaughan, M., 1961. The metabolism of adipose tissue in vitro. J. Lipid Res., Vol. 2, pp. 293316.CrossRefGoogle Scholar