Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T05:46:45.376Z Has data issue: false hasContentIssue false

Factors Influencing Shell Shape in the Mussel Mytilus Edulis

Published online by Cambridge University Press:  11 May 2009

R. Seed
Affiliation:
Wellcome Marine Laboratory, University of Leeds, Robin Hood's Bay, Yorkshire

Extract

An attempt is made to explain the great variations in gross shell morphology noted in field populations of Mytilus edulis.

In any one mussel population, variation in shell form can be attributed to differences in age, old mussels having proportionately heavier shells where width often exceeds shell height. This is invariably accompanied by down-turned, divergent umbones and varying degrees of incurvature of the ventral shell margin.

Variations in the age structure of mussel populations from different habitats can also account for local variability in shell morphology. Localities where the life expectancy of mussels is increased due to absence of predators (especially in the upper shore) reveal a high incidence of old ‘ungulate’ individuals, whereas populations in which the mussel turnover is more rapid show a preponderance of relatively young mussels.

Shell morphology is greatly influenced by growth rate and density. These probably exert their effect through physical compression which is maximum in localities of fast growth and high density and least in areas of slow growth and low density. High compression leads to an elongate form whereas low compression results in higher, more triangular shaped shells. Growth rates and densities, even within the same habitat, are, however, exceedingly variable.

Since all environmental conditions vary in both time and space, wide variation in shell morphology is to be expected, even in animals from the same locality.

Transplantation experiments indicate that variation in shell morphology is essentially phenotypic, older animals being more likely to exhibit a form which is characteristic of their particular habitat. Smaller mussels from widely different habitats show remarkable similarity in shell morphology.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, H. & Powell, H. T., 1950. The development, general morphology, and subsequent elimination of barnacle populations Balanus crenatus and B. balanoides after a heavy initial settlement. J. Anim. Ecol., Vol. 19, pp. 175–9.CrossRefGoogle Scholar
Bucquoy, E., Dautzenberg, P. & Dolfus, G., 18871898. Les mollusques matins du Rousillon. T. II, Pélécypodes. Fasc. 14–26, and separate atlas. Paris.Google Scholar
Coe, W. R., 1946. A resurgent population of the Californian bay mussel Mytilus edulis diegensis. J. exp. Zool., Vol. 99, pp. 114.CrossRefGoogle Scholar
Coe, W. R. & Fox, D. L., 1942. Biology of the Californian sea mussel Mytilus californianus. I. Influence of temperature, food supply, sex and age on the rate of growth. J. exp. Zool., Vol. 90, pp. 130.CrossRefGoogle Scholar
Coulthard, H. S., 1929. Growth of the sea mussel. Contr. Can. Biol. Fish., Vol. 4, pp. 121–36.CrossRefGoogle Scholar
Field, I. A., 1922. Biology and economic value of the sea mussel, Mytilus edulis. Bull. Bur. Fish., Wash., Vol. 38, pp. 127259.Google Scholar
Fox, D. L. & Coe, W. R., 1943. Biology of the Californian sea mussel Mytilus californianus. II. Nutrition, metabolism, growth and calcium deposition. J. exp. Zool, Vol. 93, pp. 205–49.CrossRefGoogle Scholar
Fox, D. L., Sverdrup, H. O. & Cunningham, J. P., 1937. The rate of water propulsion by the Californian sea mussel. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 72, pp. 417–39.CrossRefGoogle Scholar
Genovese, S., 1961. Analisi biometrica di una popolazione di Mytilus edulis L. proviente dal Mar del Nova. (Norddeich/Ostfriesland). Atti Soc. pelorit. Sci. fis. mat. nat., Vol. 7, pp. 333–53.Google Scholar
Hancock, D. A., 1965. Adductor muscle size in Danish and British mussels in relation to starfish predation. Ophelia, Vol. 2, pp. 253–67.CrossRefGoogle Scholar
Hendelberg, J., 1960. The freshwater pearl mussel Margaritifera margaritifera L. Institute of Freshwater Research (Drottningholm) Report, no. 41.Google Scholar
Hepper, B. T., 1957. Notes on Mytilus galloprovincialis (Lmk.) in Great Britain. J. mar. biol. Ass. U.K., Vol. 36, pp. 3340.CrossRefGoogle Scholar
Holme, N. A., 1961. Shell form in Venerupis rhomboides. J. mar. biol. Ass. U.K., Vol. 41, pp. 705–22.CrossRefGoogle Scholar
Huxley, J. S. & Tessier, G., 1936. Terminology of relative growth. Nature, Lond., Vol. 137, pp. 780–1.CrossRefGoogle Scholar
Jeffrey, J. G., 1863. British Conchology, Vol. 2, 465 pp. London: John Van Voorst.Google Scholar
Jørgensen, C. B., 1949. The rate of feeding by Mytilus in different kinds of suspension. J. mar. biol. Ass. U.K., Vol. 28, pp. 333–44.CrossRefGoogle Scholar
Lewis, J. R. & Powell, H. T., 1961. The occurrence of curved and ungulate forms of the mussel Mytilus edulis L. in the British Isles and their relationship to M. galloprovincialis (Lmk.). Proc. zool. Soc. Lond. Vol. 137, pp. 583–98.CrossRefGoogle Scholar
Mason, J., 1957. The age and growth of the scallop Pecten maximus L. in Manx waters. J. mar. biol. Ass. U.K., Vol. 36, pp. 473–92.CrossRefGoogle Scholar
Mateeva, T. A., 1948. The biology of Mytilus edulis in eastern Murman. Trudy murmansk. biol. Inst., Vol. 1, pp. 215–41.Google Scholar
Mossop, B. K. E., 1922. The rate of growth of the sea mussel Mytilus edulis at St Andrew New Brunswick, Digby Nova Scotia, and in the Hudson Bay. Trans. Can. Inst., Vol. 14, pp. 322.Google Scholar
Negus, C. L., 1966. A quantitative study of growth and production of unionid mussels in the River Thames. J. Anim. Ecol., Vol. 35, pp. 513–33.CrossRefGoogle Scholar
Orton, J. H., 1926. On rate of growth of Cardium edule. Part I. Experimental observations. J. mar. Ass. U.K., Vol. 14, pp. 239–79.CrossRefGoogle Scholar
Orton, J. H., 1928. On rhythmic periods of shell growth in Ostrea edulis with a note on fattening. J. mar. biol. Ass. U.K., Vol. 15, pp. 365427.CrossRefGoogle Scholar
Orton, J. H., 1936. Habit and shell shape in the Portuguese oyster O. angulata. Nature, Lond., Vol. 138, pp. 466–7.CrossRefGoogle Scholar
Owen, G., Trueman, E. R. & Yonge, C. M., 1959. The ligament in the lamellibranchia. Nature, Lond., Vol. 171, pp. 73–5.CrossRefGoogle Scholar
Richards, O. W., 1928. The growth of the mussel Mytilus californianus. Nautilus, Vol. 41, pp. 99101.Google Scholar
Savilov, A. I., 1953. The growth and variations in growth of the White Sea Invertebrates Mytilus edulis, Mya arenaria and Balanus balanoides. Trudy Inst. Onkol., Vol. 7, No. 198.Google Scholar
Soot, Ryen T., 1955. A report on the family Mytilidae (Pelecypoda). Allan Hancock Pacif. Exped., Vol. 20, pp. 1176.Google Scholar
Staiger, H., 1957. Genetical and morphological variation in Purpura lapillus with respect to local and regional differentation of population groups. Année biol., Vol. 61, pp. 251–8.Google Scholar
Stasek, C. R., 1963. Geometrical form and gnomic growth in the bivalved Mollusca. J. Morph., Vol. 112, pp. 215–29.CrossRefGoogle Scholar
Swan, E. F., 1952. Growth indices of the clam Mya arenaria. Ecology, Vol. 33, pp. 365–74CrossRefGoogle Scholar
Trueman, E. R., 1950. Observations on the ligament of Mytilus edulis. Q. Jl. microsc. Sci., Vol. 91, pp. 225–35.Google ScholarPubMed
Warren, A. E., 1936. An ecological study of the sea mussel Mytilus edulis. J. biol. Bd Can., Vol. 2, pp. 8994.CrossRefGoogle Scholar
Weymouth, F. W., 1923. The life history and growth of the Pismo clam Tivela stultorum (Mawe). Bull. Dep. Fish Game St Calif., No. 7.Google Scholar
White, K. M., 1937. Mytilus. L.M.B.C. Memoirs, Vol. 31. Liverpool University Press.Google Scholar
Wiborg, K. F., 1946. Undersampoumlsemicolonkelser Over Oskjellet (Modiola Modiolus L.) Rep. Norw. Fishery mar. Invest., Vol. 8 (5), pp. 185.Google Scholar
Wilbur, K. M. & Owen, G., 1964. Growth. In Physiology of Mollusca, Vol. 1, pp. 211–42. Editors Wilbur, K. M. and Yonge, C. M.. New York: Academic Press.CrossRefGoogle Scholar
Williamson, H. C., 1907. The spawning, growth and movement of the mussel (Mytilus edulis), horse mussel (Modiolus modiolus) and the spoutfish (Solen siliqua). Scient. Invest. Fishery Bd Scotl., 25th Annual Report (1906), pp. 221–55.Google Scholar