Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:00:38.178Z Has data issue: false hasContentIssue false

Factors controlling juvenile growth and population structure of the starfish Asterias rubens in intertidal habitats: field and experimental approaches

Published online by Cambridge University Press:  22 July 2011

Monique Guillou*
Affiliation:
Laboratoire de l'Environnement Marin (UMR 6539), Institut Européen de la Mer, Place N. Copernic, Université de Bretagne Occidentale, F-29780 Plouzané, France
Guillemette Joly-Turquin
Affiliation:
Laboratoire de l'Environnement Marin (UMR 6539), Institut Européen de la Mer, Place N. Copernic, Université de Bretagne Occidentale, F-29780 Plouzané, France Laboratoire de Biologie Marine (CP 160/15), Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium
Sandra Leyzour
Affiliation:
Laboratoire de l'Environnement Marin (UMR 6539), Institut Européen de la Mer, Place N. Copernic, Université de Bretagne Occidentale, F-29780 Plouzané, France
Philippe Pernet
Affiliation:
Laboratoire de Biologie Marine (CP 160/15), Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium
Philippe Dubois
Affiliation:
Laboratoire de Biologie Marine (CP 160/15), Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium
*
Correspondence should be addressed to: M. Guillou, Laboratoire de l'Environnement Marin (UMR 6539), Institut Européen de la Mer Place N. Copernic, Université de Bretagne Occidentale, F-29780 Plouzané, France email: [email protected]

Abstract

The dynamics of intertidal populations of the starfish Asterias rubens, living in contrasted habitats and over a broad geographical range, were studied from March 2000 to November 2002 using modal analysis. As only 1 juvenile (first year after recruitment) and 1 adult (subsequent years) modes could be distinguished; only juvenile growth was quantified. Concomitantly, experiments were carried out to test several factors assumed to influence juvenile growth: food quantity and quality, emersion, salinity variations and temperature. Three different juvenile growth patterns were evidenced: (1) a fast and protracted growth linked to high food availability and lack of disturbance; (2) a winter cessation of growth likely due to a seasonal increase of emersion-related stress and salinity variations; and (3) disrupted juvenile dynamics, which was encountered in 2 populations. In the first one, estuarine salinity conditions limited growth and, combined with food depletion, led to the extinction of the population. In the second one, wave action confined most of the population to a restricted area with low food levels. In the third scenario, intraspecific competition for food was probably at the source of an unusual growth pattern in which most juveniles did not grow while a small proportion achieved a medium growth rate.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, H. and Powell, H.T. (1951) The growth rates of juvenile Asterias rubens. Journal of the Marine Biological Association of the United Kingdom 30, 381385.CrossRefGoogle Scholar
Binyon, J. (1976) The effect of reduced salinity upon the starfish Asterias rubens L. together with a special consideration of the integument and its permeability to water. Thalassia Jugoslavica 12, 1120.Google Scholar
Clark, A.M. and Downey, M.E. (1992) Starfishes of the Atlantic. London: Chapman & Hall.Google Scholar
Crump, R.G. (1971) Annual reproductive cycles in 3 geographically separated populations of Patiriella regularis (Verrill), a common New Zealand asteroid. Journal of Experimental Marine Biology and Ecology 7, 137162.CrossRefGoogle Scholar
Ebert, T.A. (1983) Recruitment in echinoderms. In Jangoux, M. and Lawrence, J.M. (eds) Echinoderm Studies 1. Rotterdam: Balkema, pp. 189203.Google Scholar
Ebert, T.A. (1996) Adaptive aspects of phenotypic plasticity in echinoderms. Oceanologica Acta 19, 347355.Google Scholar
Falk-Petersen, I.B. (1982) Breeding season and egg morphology of echinoderms in Balsfjorden, Northen Norway. Sarsia 67, 215221.CrossRefGoogle Scholar
Feder, H.M. (1956) Natural history studies on the starfish Pisaster ochraceus (Brandt, 1835) in the Monterey Bay area. Doctoral thesis. University of Stanford, USA.Google Scholar
Gallagher, T., Richardson, C.A., Seed, R. and Jones, T. (2008) The seasonal movement and abundance of the starfish, Asterias rubens in relation to mussel farming practice: a case study from the Menai Strait. Journal of Shellfish Research 27, 12091215.CrossRefGoogle Scholar
Grant, A., Morgan, P.J. and Olive, P.J.W. (1987) Use made in marine ecology of methods for estimating demographic parameters from size/frequency data. Marine Biology 95, 201208.CrossRefGoogle Scholar
Grosjean, P., Spirlet, C. and Jangoux, M. (1996) Experimental study of growth in the echinoid Paracentrotus lividus (Lamarck, 1816) (Echinodermata). Journal of Experimental Marine Biology and Ecology 201, 173184.CrossRefGoogle Scholar
Guillou, M. (1980) Données sur la croissance d'Asterias rubens en Bretagne sud. In Jangoux, M. (ed.) Echinoderms: present and past. Rotterdam: Balkema, pp. 179186.Google Scholar
Guillou, M. (1983) La croissance d'Asterias rubens en Baie de Douarnenez. Annales de l'Institut Océanographique, Paris 59, 141154.Google Scholar
Guillou, M. and Guillaumin, A. (1985) Variations in the growth rate of Asterias rubens from western and south Brittany. In Keegan, B.F. and O'Connor, B.D.S. (eds) Echinodermata. Rotterdam: Balkema, pp. 513521.Google Scholar
Hancock, D.A. (1958) Notes on starfish on an Essex oyster bed. Journal of the Marine Biological Association of the United Kingdom 37, 564589.CrossRefGoogle Scholar
Hatanaka, M. and Kosaka, M. (1959) Biological studies on the population of the starfish Asterias amurensis in Sendaï Bay. Tohoku Journal of Agricultural Research 4, 159178.Google Scholar
Hayward, J.L. and Ryland, J.S. (1990) The marine fauna of the British Isles and north-western Europe. New York: Oxford Science Publication.Google Scholar
Jangoux, M. and Van Impe, E. (1977) The annual pyloric cycle of Asterias rubens L. (Echinodermata: Asteroidea). Journal of Experimental Marine Biology and Ecology 30, 165184.CrossRefGoogle Scholar
Jangoux, M. and Vloebergh, M. (1973) Contribution à l'étude du cycle annuel de reproduction d'une population d'Asterias rubens (Echinodermata: Asteroidea) du littoral Belge. Netherlands Journal of Sea Research 6, 389408.CrossRefGoogle Scholar
Joly, G., Guillou, M. and Dubois, P. (2003) Population dynamics of Asterias rubens under contrasted environmental conditions: preliminary results. In Féral, J.P. and David, B. (eds) Echinoderm research 2001. Rotterdam: Balkema, pp. 36.Google Scholar
Kowalski, R. (1955) Untersuchungen zur Biology des Seesternes Asterias rubens L. in Brackwasser. Kieler Meeresforschungen 11, 201213.Google Scholar
Kvalvagnaes, K. (1972) Tagging of the starfish, Asterias rubens. Sarsia 49, 8188.CrossRefGoogle Scholar
Lawrence, J.M. and Cowell, B.C. (1996) The righting response as an indication of stress in Stichaster striatus (Echinodermata: Asteroidea). Marine and Freshwater Behavior and Physiology 27, 239248.CrossRefGoogle Scholar
Lawrence, J.M. and Lane, J.M. (1982) The utilization of nutrients by post-metamorphic echinoderms. In Jangoux, M. and Lawrence, J.M. (eds) Echinoderm nutrition. Rotterdam: Balkema, pp. 331371.Google Scholar
Le Gal, A. (2003) Etude d'un facteur environnemental: la température et d'un facteur anthropique: les hydrocarbures, sur la biologie d'Asterias rubens (L). Master's thesis. University of Bretagne Occidentale, Brest, France.Google Scholar
Macdonald, P.D.M. and Pitcher, T.J. (1979) Age-groups from size–frequency data: a versatile and efficient method of analysing distribution mixtures. Journal of the Fisheries Research Board of Canada 36, 9871001.CrossRefGoogle Scholar
Majeed, S.A. (1987) Organic matter and biotic indices on the beaches of North Brittany. Marine Pollution Bulletin 18, 490495.CrossRefGoogle Scholar
Menge, B.A. (1982) Effect of feeding on the environment: Asteroidea. In Jangoux, M. and Lawrence, J.M. (eds) Echinoderm nutrition. Rotterdam: Balkema, pp. 521551.Google Scholar
Nauen, C.E. (1978) The growth of the sea star Asterias rubens and its role as a benthic predator in Kiel Bay. Kieler Meeresforschungen 210, 6881.Google Scholar
Nichols, D. and Barker, M.F. (1984) Growth of juvenile Asterias rubens L. (Echinodermata Asteroidea) on an intertidal reef in south-western Britain. Journal of Experimental Marine Biology and Ecology 78, 157165.CrossRefGoogle Scholar
Sanford, E. (2002) The feeding, growth, and energetics of two rocky intertidal predators (Pisaster ochraceus and Nucella canaliculata) under water temperatures simulating episodic upwelling. Journal of Experimental Marine Biology and Ecology 273, 199218.CrossRefGoogle Scholar
Sarantchova, O.L. (2001) Research into tolerance for the environment salinity in the starfish Asterias rubens from populations of the White Sea and Barents Sea. Journal of Experimental Marine Biology and Ecology 264, 1528.CrossRefGoogle Scholar
Siebers, C. (1979) Transintegumentary uptake of dissolved amino acids in the sea star Asterias rubens. Assessment of its nutritional role with special reference to the significance of heterotrophic bacteria. Marine Ecology Progress Series 1, 169177.CrossRefGoogle Scholar
Sloan, N.A. (1980) Aspects of the feeding biology of asteroids. Oceanography and Marine Biology: an Annual Review 18, 57124.Google Scholar
Smith, G.F. (1940) Factors limiting distribution and size of the starfish. Journal of the Fisheries Research Board of Canada 5, 84103.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F. (1995) Biometry: the principles and practice of statistics in biological research. 3rd edition. New York: W.H. Freeman.Google Scholar
Sommer, U., Meusel, B. and Stielau, C. (1999) An experimental analysis of the importance of body-size in the seastar–mussel predator–prey relationship. Acta Oecologia 20, 8186.CrossRefGoogle Scholar
Vevers, H.G. (1949) The biology of Asterias rubens L.: growth and reproduction. Journal of the Marine Biological Association of the United Kingdom 28, 165187.CrossRefGoogle Scholar
Wares, J.P. (2001) Biogeography of Asterias. North Atlantic climate change and speciation. Biological Bulletin. Marine Biological Laboratory, Woods Hole 201, 95103.CrossRefGoogle ScholarPubMed
Zar, J.H. (1996) Biostatistical analysis. Englewood Cliffs, NJ: Prentice-Hall Inc.Google Scholar