Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T15:22:41.924Z Has data issue: false hasContentIssue false

Evidence of trawling impact on Hoplostethus mediterraneus in the central–eastern Mediterranean Sea

Published online by Cambridge University Press:  16 January 2014

S. Vitale*
Affiliation:
Institute for Marine and Coastal Environment–National Research Council (IAMC-CNR), Mazara del Vallo, via L. Vaccara, 61, I-91026 Mazara del Vallo, Italy
S. Ragonese
Affiliation:
Institute for Marine and Coastal Environment–National Research Council (IAMC-CNR), Mazara del Vallo, via L. Vaccara, 61, I-91026 Mazara del Vallo, Italy
L. Cannizzaro
Affiliation:
Institute for Marine and Coastal Environment–National Research Council (IAMC-CNR), Capo Granitola, via del Faro, 3, I-91021 Campobello di Mazara, Italy
F. Fiorentino
Affiliation:
Institute for Marine and Coastal Environment–National Research Council (IAMC-CNR), Mazara del Vallo, via L. Vaccara, 61, I-91026 Mazara del Vallo, Italy
S. Mazzola
Affiliation:
Institute for Marine and Coastal Environment–National Research Council (IAMC-CNR), Mazara del Vallo, via L. Vaccara, 61, I-91026 Mazara del Vallo, Italy
*
Correspondence should be addressed to: S. Vitale, via Luigi Vaccara, 61, I-91026 Mazara del Vallo, TP, Italy email: [email protected]

Abstract

The silver roughy, Hoplostethus mediterraneus is a benthopelagic cosmopolitan fish regularly caught as by-catch of the deep-water crustacean trawl fishery (CTF) in the central–eastern Mediterranean. Monthly samples of silver roughy were sampled from the catches of four commercial trawlers in 2004. Each trawler operated in different fishing grounds (FGs), located off Northern Tunisia, South of Sicily, Malta Islands and in South Levant, for which different exploitation levels are reported. The overall length–frequency distribution (LFD) was constructed, and fishing impact indices (length as percentage of LFD, optimum and maximum length, percentage of mega-spawners and total mortality/von Bertalanffy curvature ratio) were calculated. In spite of an overall acceptable status (juveniles, matures and mega-spawners were present in the catch), sampling data revealed significant differences in LFD shape and status indices between FGs. Those FGs traditionally considered more exploited (Northern Tunisia and South of Sicily) showed a dominance of juveniles, a rarefaction of mega-spawners, a reduction in maximum and asymptotic length and a higher Z/K ratio. Considering the general homogeneity of Mediterranean deep-water habitats, the pelagic dispersal of eggs and the poor swimming capabilities of silver roughy, the present results indicated that deep-water trawling may induce a slow and subtle, although significant, erosion of the older, late maturing and slow growing component of the stocks in the Mediterranean (so-called longevity-overfishing).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alverson, D.L. (1971) Manual of methods for fisheries resource survey and appraisal. FAO Fishery Technical Paper 102. Rome: FAO, 80 pp.Google Scholar
Beamish, R.J., McFarlane, G.A. and Benson, A. (2006) Longevity overfishing. Progress in Oceanography 68, 289302.Google Scholar
Bertrand, J.A., Gil de Sola, L., Papaconstantinou, C., Relini, G. and Souplet, A. (2002) The general specifications of the MEDITS survey. Scientia Marina 66, 917.Google Scholar
Cailliet, G.M., Andrews, A.H., Burton, E.J., Watters, D.L., Kline, D.E. and Ferry-Graham, L.A. (2001) Age determination and validation studies of marine fishes: do deep-dwellers live longer? Experimental Gerontology 36, 739764.Google Scholar
Cartes, J.E., Maynou, F., Sardà, F., Company, J. B., Lloris, D. and Tudela, S. (2004) The Mediterranean deep-sea ecosystems: an overview of their diversity, structure, functioning and anthropogenic impacts. In The Mediterranean deep-sea ecosystems: an overview of their diversity, structure, functioning and anthropogenic impacts with a proposal for their conservation. Malaga/Rome: IUCN/WWF, pp. 938.Google Scholar
Cau, A. and Deiana, A.M. (1982) Contributo alla conoscenza della biologia di Hoplostethus medirerraneus (Valenciennes, 1829) (Osteitti, Bericiformi). Bollettino della Società sarda di scienze naturali 21, 185192.Google Scholar
Centro Internazionale di Studi Giuridici (1988) La disciplina della pesca in acque territoriali. Napoli: Edizione Scientifiche Italiane, 322 pp.Google Scholar
Clark, M. (2001) Are deepwater fisheries sustainable? The example of Orange roughy Hoplostethus atlanticus) in New Zealand. Fisheries Research 51, 123135.Google Scholar
Di Natale, A. (1995) Survey of red shrimp fishing in the western Italian basins. Final Report, Project MED 92/005 (European Union, D.G. XIV), Volumes I + II, 773 pp.Google Scholar
Dieuzeide, R. (1963) Sur la presénce et Méditerranée de Gephyroberyx darwini (Johnson). Recueil des Travaux de la Station Marine d'Endoume 28, 113116.Google Scholar
Dimech, M., Kaiser, M.J., Ragonese, S. and Schembri, P.J. (2012) Ecosystem effects of fishing on the continental slope in the Central Mediterranean Sea. Marine Ecology Progress Series 449, 4154.Google Scholar
D'Onghia, G., Matarrese, A., Tursi, A., Sion, L. and Panza, M. (1995) Aspetti della biologia di Hoplostethus medirerraneus (Pisces, Osteichthyes) nel Mar Ionio: riproduzione e accrescimento. Biolologia Marina Mediterranea 2, 251255.Google Scholar
D'Onghia, G., Tursi, A., Marano, C.A. and Basanisi, M. (1998) Life history traits of Hoplostethus mediterraneus (Pisces: Beryciformes) from the north-western Ionian Sea (Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 78, 321339.Google Scholar
EU fishing fleet register (2013) Available at: http://ec.europa.eu/fisheries/fleet/index.cfm (accessed 21 December 2013).Google Scholar
Follesa, M.C., Porcu, C., Cabiddu, S., Mulas, A., Deiana, A.M. and Cau, A. (2011) Deep-water fish assemblages in the central–western Mediterranean (south Sardinian deep-waters). Journal of Applied Ichthyology 27, 129135.Google Scholar
Formacion, S.P., Rongo, J.M. and Sambilay, V.C. (1991) Extreme value theory applied to the statistical distribution of the largest lengths of fish. Asian Fisheries Science 4, 123135.Google Scholar
Francis, R.I.C.C. and Horn, P.L. (1997) Transition zone in otoliths of Orange roughy (Hoplostethus atlanticus) and its relationship to the onset of maturity. Marine Biology 129, 681687.Google Scholar
Froese, R. (2004) Keep it simple: three indicators to deal with overfishing. Fish and Fisheries 5, 8691.Google Scholar
Froese, R. and Binohlan, C. (2000) Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. Journal of Fish Biology 56, 758773.Google Scholar
Froese, R. and Pauly, D. (2002) FishBase. Available at: www.fishbase.org (accessed 21 December 2013).Google Scholar
Froese, R., Stern-Pirlot, A., Winker, H. and Gascuel, D. (2008) Size matters: how single-species management can contribute to ecosystem-based fisheries management. Fisheries Research 92, 231241.Google Scholar
Gage, J.D. and Tyler, P.A. (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor. Journal of the Marine Biological Association of the United Kingdom 71, 747748.Google Scholar
Garofalo, G., Giusto, G.B., Cusumano, S., Ingrande, G., Sinacori, G., Gristina, M. and Fiorentino, F. (2007) Sulla cattura per unità di sforzo della pesca a gamberi rossi sui fondi batiali del mediterraneo orientale. Biologia Marina Mediterranea 14, 250251.Google Scholar
Gordon, J.D.M. and Duncan, J.A.R. (1987) Aspects of the biology of Hoplostethus atlanticus and H. mediterraneus (Pisces: Berycomorphi) from the slopes of the Rockall Trough and the Porcupine Sea Bight (north-eastern Atlantic). Journal of the Marine Biological Association of the United Kingdom 67, 119133.Google Scholar
Gristina, M., Bahri, T., Fiorentino, F. and Garofalo, G. (2006) Comparison of demersal fish assemblages in three areas of the Strait of Sicily under different trawling pressures. Fisheries Research 81, 6071.Google Scholar
Gulland, J.A. (1969) Manual of methods for fish stock assessment, Part 1: Fish population analysis. FAO Manuals in Fisheries Science, No. 4. Rome: FAO, 154 pp.Google Scholar
Gulland, J.A. (1983) Fish stock assessment. A manual of basic methods. FAO/Wiley Series on Food and Agriculture, No. 1. Rome: FAO/Wiley, 233 pp.Google Scholar
Hoggarth, D.D., Abeyasekera, S., Arthur, R.I., Beddington, J.R., Burn, R.W., Halls, A.S., Kirkwood, G.P., McAllister, M., Medley, P., Mees, C.C., Parkes, G.B., Pilling, G.M., Wakeford, R.C. and Welcomme, R.L. (2006) Stock assessment for fishery management—a framework guide to the stock assessment tools of the Fisheries Management Science Programme (FMSP). FAO Fisheries Technical Paper 487 Rome: FAO, 261 pp.Google Scholar
Kerstan, S.L. (1989) The food of silver roughy (Hoplostethus mediterraneus, Beryciformes, Trachichthyidae) from New Zealand waters. Meeresforschung 32, 241247.Google Scholar
Kotlyar, A.N. (1980) Age and growth speed of the bigheads, Hoplostethus atlanticus and H. mediterraneus Cuvier (Trachichthyidae, Beryciformes). In Shirshon, P.V. (ed.) Fishes of the open ocean. Moscow: Institute of Oceanography, pp. 6888.Google Scholar
Istituto Nazionale di Statistica (1977) Annuario statistico della zootecnia, pesca e caccia. Rome: IstatGoogle Scholar
Labropoulou, M. and Papaconstantinou, C. (2000) Community structure of deep-sea demersal fish in the North Aegean Sea (northeastern Mediterranean). Hydrobiolgia 440, 281296.Google Scholar
Leaman, B.M. and Beamish, R.J. (1984) Ecological and management implications of longevity in some northeast pacific groundfishes. International North Pacific Fisheries Commission Bulletin 42, 85230.Google Scholar
Madurell, T., Cartes, J.E. and Labropoulou, M. (2004) Changes in the structure of fish assemblages in a bathyal site of the Ionian Sea (eastern Mediterranean). Fisheries Research 66, 245260.Google Scholar
Madurell, T. and Cartes, J.E. (2005) Temporal changes in feeding habits and daily rations of Hoplostethus mediterraneus in the bathyal Ionian Sea (eastern Mediterranean). Marine Biology 146, 951962.Google Scholar
Maggio, T., Lo Brutto, S., Cannas, R., Deiana, A.M. and Arculeo, M. (2009) Environmental features of deep-sea habitats linked to the genetic population structure of a crustacean species in the Mediterranean Sea. Marine Ecology 30, 354365.Google Scholar
Maurin, C. (1962) Etude des fonds chalutables de la Méditerranée occidentale (Ecologie et Peche). Résultats des campagnes des navires océanographiques ‘Président-Théodore-Tissier’ 1957 et 1960 et ‘Thalassa’ 1960 et 1961. Revue des Travaux de l'Institut des Pêches Maritimes 26, 163218.Google Scholar
Maurin, C. (1970) Quelques aspects de la faune ichthyologique Méditerranée. Journées Ichthyologiques 7, 2738.Google Scholar
Merrett, N.R. and Haedrich, R. (1997) Deep-sea demersal fish and fisheries. London: Chapman and Hall, Fish and Fisheries Series, 287 pp.Google Scholar
Millot, C., Candela, J., Fuda, J.L. and Tber, Y. (2006) Large warming and salinification of the Mediterranean outflow due to changes in its composition. Deep-Sea Research I 53, 656666.Google Scholar
Morales-Nin, B., Maynou, F., Sardà, F., Cartes, J., Moranta, J., Massutì, E., Company, J., Rotllant, G., Bozzano, A. and Stefanescu, C. (2003) Size influence in Zonation Patterns in fishes and crustaceans from deep-water communities of the western Mediterranean. Journal of Northwest Atlantic Fishery Science 31, 413430.Google Scholar
Moranta, J., Stefanescu, C., Massutì, E., Morales-Nin, B. and Lloris, D. (1998) Fish community structure and depth-related trends on the continental slope of the Balearic Islands (Algerian basin, western Mediterranean). Marine Ecology Progress Series 171, 247259.Google Scholar
Morato, T., Watson, R., Pitcher, T.J. and Pauly, D. (2006) Fishing down the deep. Fish and Fisheries 7, 2434.Google Scholar
Mytilineou, C.H., Maiorano, S., Kavadas, S., D'Onghia, G., Kapiris, K. and Capezzuto, F. (2001) Size structure comparison in some demersal species between two areas of different fishing impact in the deep water of eastern–central Mediterranean (Ionian Sea). In NAFO SCR (eds) Proceeding of the Deep-sea Fisheries Symposium, 12–14 September Cuba. Deep-Sea Fisheries Symposium. NAFO SCR, Doc. 01/125, pp. 1–7.Google Scholar
Pais, C. (2001) Aspects of the biology of Hoplostethus mediterraneus from the south coast of Portugal. Journal of the Marine Biological Association of the United Kingdom 81, 711712.Google Scholar
Pais, C. (2002) Diet of a deep-sea fish, Hoplostethus mediterraneus. Journal of the Marine Biological Association of the United Kingdom 82, 351352.Google Scholar
Pakhorukov, N.P. (2008) Visual observations of fish from seamounts of the Southern Azores region (the Atlantic Ocean). Journal of Ichthyology 48, 114123.Google Scholar
Pauly, D. (1984) Fish population dynamics in tropical waters: a manual for use with programmable calculators. In ICLARM Studies and Reviews 8. Penang: ICLARM, 325 pp.Google Scholar
Pauly, D., Christensen, C., Dalsgaard, J., Froese, R. and Torres, F. Jr (1998) Fishing down the food webs. Science 279, 860863.Google Scholar
Pitcher, T.J. (1995) The impact of pelagic fish behaviour on fisheries. Scientia Marina 59, 295306.Google Scholar
Ragonese, S. (1995) Geographical distribution of Aristaeomorpha foliacea (Crustacea-Aristeidae) in the Sicilian Channel (Mediterranean Sea). ICES Journal of Marine Science 199, 183188.Google Scholar
Ragonese, S. (2004) Growth and senescence interaction in fish: the state of art. Biologia Marina Mediterranea 11, 91106.Google Scholar
Ricker, W.E. (1975) Computation and interpretation of biological statistics of fish population. Bulletin of the Fisheries Research Board of Canada 191. Ottawa: Fisheries and Marine Service, 382 pp.Google Scholar
Rochet, M.J., Trenkel, V.M., Bellail, R., Coppin, F., Le Pape, O., Mahé, J.C., Morin, A., Poulard, J.C., Schlaich, I., Souplet, A., Vérin, Y. and Bertrand, J.A. (2005) Combining indicator trends to assess ongoing changes in exploited fish communities: diagnostic of communities off the coasts of France. ICES Journal of Marine Science 62, 16471664.Google Scholar
Rosenberg, A.A. and Beddington, J.R. (1988) Length-based methods of fish stock assessment. In Gulland, J.A. (ed.) Fish population dynamics. 2nd edition.New York: Wiley, pp. 83103.Google Scholar
Sadovy, Y. (2001) The threat of fishing to highly fecund fishes. Journal of Fish Biology 59, 90108.Google Scholar
Scaccini, A., Piccinetti, C. and Sarà, R. (1970) Stato attuale della pesca in acque profonde nei mari italiani. Bollettino di pesca, di piscicoltura di idrobiologia 1, 536.Google Scholar
Smith, P.J., Francis, R.I.C.C. and McVeagh, M. (1991) Loss of genetic diversity due to fishing pressure. Fisheries Research 10, 309316.Google Scholar
Trenkel, V. and Rochet, M.J. (2003) Performance of indicators derived from abundance estimates for detecting the impact of fishing on a fish community. Canadian Journal of Fisheries and Aquatic Sciences 60, 6785.Google Scholar
Vitale, S., Cannizzaro, L., Bono, G., Beltrano, A.M., Ingrassia, M. and Milazzo, A. (2004) Age determination of Silver roughty Hoplostethus mediterraneus (C., 1829) (Pisces; Trachichthyidae) in the Strait of Sicily. Biologia Marina Mediterranea 11, 661665.Google Scholar
Vølstad, J.H., Korsbrekke, K., Nedreaas, K.H., Nilsen, M., Nilsson, G.N., Pennington, M., Subbey, S. and Wienerroither, R. (2011) Probability-based surveying using self-sampling to estimate catch and effort in Norway's coastal tourist fishery. ICES Journal of Marine Science 68, 17851791.Google Scholar
Wetherall, J.A., Polovina, J.J. and Ralston, S. (1987) Estimating growth and mortality in steady-state fish stocks from length-frequency data. In Pauly, D. and Morgan, G.R. (eds) Length based methods in fisheries research. Manila: International Center for Living Aquatic Resources Management, pp. 5374.Google Scholar