Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T22:34:44.319Z Has data issue: false hasContentIssue false

The Ecology of the Tamar Estuary II. Under-Water Illumination

Published online by Cambridge University Press:  11 May 2009

Extract

The Zeiss Pulfrich photometer, with its eight spectral niters covering narrow spectral bands within the visible spectrum, has been used to investigate the penetration of light into an estuary under winter and summer conditions.

Throughout the visible spectrum, extinction coefficients in Hamoaze are always higher, in winter often very much higher, than in the English Channel. In marked contrast to the open sea, red light penetrates as well or better than green, and blue is cut down most rapidly

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1938

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschkinass, E. Von, 1895. Ueber das Absorptionspectrum des flüssigen Wassers und über die Durchlässigkeit der Augenmedien für rothe und ultrarothe Strahlen. Wied. Annal. Physik. Chemie, Vol. 55, pp. 401–31; cited by Sawyer (1931)CrossRefGoogle Scholar
Atkins, W. R. G. & Poole, H. H., 1933. The photo-electric measurement of the penetration of light of various wave-lengths into the sea and the physiological bearing of the results. Phil. Trans. Roy. Soc., Ser. B, Vol. 222, pp. 129–64.Google Scholar
Atkins, W. R. G. & Poole, H. H., 1936. The photo-electric measurement of the diurnal and seasonal variations in daylight and a globe integrating photometer. Phil. Trans. Roy. Soc., Ser. A, Vol. 235, pp. 245–72.Google Scholar
Clarke, G. L., 1936. Light penetration in the western North Atlantic and its application to biological problems. Rapp. Proc.-verb. Cons. Int. Expl. Mer, Vol. ci, 2eme Partie, no. 3, pp. 114.Google Scholar
Dawson, L. H. & Hulburt, E. O., 1934. The Absorption of Ultraviolet and Visible Light by Water. Journ. Opt. Soc. Amer., Vol. 24, 175–7.CrossRefGoogle Scholar
Hartley, P. H. T. & Spooner, G. M. 1938. The Ecology of the Tamar Estuary. I. Introduction. Journ. Mar. Biol. Assoc., Vol. xxii, pp. 501–8.CrossRefGoogle Scholar
Kalle, K., 1931, 1935. Meereskundliche chemische Untersuchungen mit Hilfe des Zeiβschen Pulfrich-Photometers. I. Mitt. Apparatur. V. Mitt. Die Bestimmung des Gesamt-Phosphorgehaltes (lebende Substanz) und Trübungsmessungen. Ann. d. Hydr., Jahrg. LIX, pp. 313–17 and Jahrg. LXIII, pp. 195–204.Google Scholar
Kalle, K., 1937. Nährstoff-Untersuchungen als hydrographisches Hilfsmittel zur Unterscheidung von Wasserkörpern. Ann. d. Hydr., Jahrg. LXV, pp. 118.Google Scholar
Lange, B. & Schusterius, C., 1932. Die Absorption des Wassers im sichtbaren Spektralgebiet. Zeits. physikal. Chem., Abt. A, Bd. 159, pp. 303–5; Berichtigung, Bd. 160, Heft 6.CrossRefGoogle Scholar
Milne, A., 1938 a. The ecology of the Tamar Estuary. III. Salinity and temperature conditions in the lower estuary. Journ. Mar. Biol. Assoc., Vol. xxii, pp. 529–42.CrossRefGoogle Scholar
Nielsen, E. Steemann, 1935. The production of phytoplankton at the Faroe Isles, Iceland, East Greenland and in waters around. Medd. Komm. Danmarks Fisk. og Havundersøgelser, Ser. Plankton, Bd. iii, pp. 193.Google Scholar
Pettersson, H., 1935. Submarine daylight and the transparency of sea water. Journ. Cons. Int. Expl. Mer, Vol. x, pp. 4865.CrossRefGoogle Scholar
Pettersson, H., Höglund, H. & Landberg, S., 1934. Submarine daylight and the photosynthesis of phyto-plankton. Göteborgs kungl. Vetenskaps- och VitterhetsSamhälles Handlingar. Femte Följden, Ser. B, Bd. 4, No. 5, pp. 117.Google Scholar
Poole, H. H. & Atkins, W. R. G., 1926. On the penetration of light into sea water. Journ. Mar. Biol. Assoc., Vol. xiv, pp. 177–98.CrossRefGoogle Scholar
Poole, H. H. & Atkins, W. R. G., 1937. The penetration into the sea of light of various wave-lengths as measured by emission or rectifier photo-electric cells. Proc. Roy. Soc., Ser. B, Vol. 123, pp. 151–65.Google Scholar
Powell, W. M. & Clarke, G. L., 1936. The reflection and absorption of daylight at the surface of the ocean. Journ. Opt. Soc. Amer., Vol. 26, pp. 123.CrossRefGoogle Scholar
Sawyer, W. R., 1931. The spectral absorption of light by pure water and Bay of Fundy water. Contrib. Canadian Biol. and Fish., N.S., Vol. vii, pp. 7389.Google Scholar
Utterback, C. L. & Jorgensen, W., 1934. Absorption of Daylight in the North Pacific Ocean. Journ. Cons. Int. Expl. Mer, Vol. ix, pp. 197209.CrossRefGoogle Scholar
Williams, E. A. & Utterback, C. L., 1935. Seasonal changes in components of submarine daylight. Journ. Opt. Soc. Amer., Vol. 25, pp. 110.CrossRefGoogle Scholar