Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T17:33:33.941Z Has data issue: false hasContentIssue false

The ecology of protists epibiontic on marine hydroids

Published online by Cambridge University Press:  04 August 2008

Giorgio Bavestrello
Affiliation:
Di.S.Mar., Università Politecnica delle Marche, Via Brecce Bianche Ancona, Italy
Carlo Cerrano
Affiliation:
Dip.Te.Ris., Università di Genova, Corso Europa 26, 16100 Genova, Italy
Cristina Di Camillo*
Affiliation:
Di.S.Mar., Università Politecnica delle Marche, Via Brecce Bianche Ancona, Italy
Stefania Puce
Affiliation:
Di.S.Mar., Università Politecnica delle Marche, Via Brecce Bianche Ancona, Italy
Tiziana Romagnoli
Affiliation:
Di.S.Mar., Università Politecnica delle Marche, Via Brecce Bianche Ancona, Italy
Silvia Tazioli
Affiliation:
Di.S.Mar., Università Politecnica delle Marche, Via Brecce Bianche Ancona, Italy
Cecilia Totti
Affiliation:
Di.S.Mar., Università Politecnica delle Marche, Via Brecce Bianche Ancona, Italy
*
Correspondence should be addressed to: Cristina Di Camillo, Di.S.Mar., Università Politecnica delle Marche, Via Brecce Bianche Ancona, Italy email: [email protected]

Abstract

Several hydroid species have an epibiontic lifestyle, living associated with organisms of many different phyla. On the other hand, hydroids can also host dense assemblages of microflora and microfauna, mainly composed of protists and bacteria. Among protists, diatoms are the most abundant and diversified group, followed by foraminifera and sessile ciliata such as Vorticella and suctorians. Regarding the spatial distribution of epibionts, hydroid colonies represent a mosaic of different microhabitats: in some species, each colony portion (base of the stem, branches, pedicels, inner space between the polyp and the theca) hosts different diatom species. Moreover, three foram species have been shown to occupy different positions according to the plasticity of their shell. A host specificity has been also observed: some epibionts are typical of only one or a group of species, such as Vorticella living on the teeth of the Aglaophenia thecae or coralline algae that cover mainly Aglaophenia and Sertularella colonies. The microassemblage associated to Eudendrium racemosum showed a typical seasonal cycle and a vertical distribution which reflects the selective advantage of the different life forms. Experiments with plastic structures miming hydroid colonies demonstrated that the living hydroid affects the assemblage structure. Probably, the perisarc composition and secondary metabolites play a crucial role in the relationships between hydroids and their microassemblage.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Admiraal, W., Peletier, H. and Zomer, H. (1982) Observation and experiments on the population dynamics of epipelic diatoms from an estuarine mudflat. Estuarine, Coastal and Shelf Science 14, 471487.CrossRefGoogle Scholar
Barangè, M. (1988) Prey selection and capture strategies of the benthic hydroid Eudendrium racemosum. Marine Ecology Progress Series 47, 8388.CrossRefGoogle Scholar
Bavestrello, G., Cerrano, C., Cattaneo Vietti, R. and Sarà, M. (1996) Relation between Eudendrium glomeratum (Cnidaria, Hydromedusae) and its associated vagile fauna. In Bouillon, J. and Cornelius, P.F.S. (eds) Advances in Hydrozoan Biology, pp. 137143. [Scientia Marina, no. 60.]Google Scholar
Beck, M.W. (1998) Biodiversity: a concept lost in the mist between ecology and conservation biology. In Lunney, D. et al. . (eds) Is the biodiversity tail wagging the zoological dog? Transactions of the Royal Zoological Society of New South Wales, pp. 5061.Google Scholar
Beck, M.W. (2000) Separating the elements of habitat structure: independent effects of habitat complexity and structural components on rocky intertidal gastropods. Journal of Experimental Marine Biology and Ecology 249, 2949.CrossRefGoogle ScholarPubMed
Bodeanu, N. (1987/1988) Structure et dynamique de l'algoflore unicellulaire dans les eaux du littoral romain de la mer Noire. Cercetari Marine 20–21, 19250.Google Scholar
Bradshaw, C., Collins, P. and Brand, A.R. (2003) To what extent does upright sessile epifauna affect benthic biodiversity and community composition? Marine Biology 143, 783791.CrossRefGoogle Scholar
Brandini, F.P., da Silva, E.T., Pellizzari, F.M., Fonseca, A.L.O. and Fernandes, L.F. (2001) Production and biomass accumulation of periphytic diatoms growing on glass slides during a 1-year cycle in a subtropical estuarine environment (Bay of Paraguaná, southern Brazil). Marine Biology 138, 163171.CrossRefGoogle Scholar
Delgado, M. (1989) Abundance and distribution of microphytobenthos in the bays of Ebro delta (Spain). Estuarine, Coastal and Shelf Science 29, 183194.CrossRefGoogle Scholar
Delgado, M., De Jonge, V.N. and Peletier, H. (1991) Experiments on resuspension of natural microphytobenthos populations. Marine Biology 108, 321328.CrossRefGoogle Scholar
Di Camillo, C., Bo, M., Lavorato, A., Morigi, C., Segre Reinach, M., Puce, S. and Bavestrello, G. (2008). Foraminifera epibiontic on Eudendrium (Cnidaria, Hydrozoa) from the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom 88, 485489.CrossRefGoogle Scholar
Di Camillo, C., Puce, S., Romagnoli, T., Tazioli, S., Totti, C. and Bavestrello, G. (2005) Relationships between benthic diatoms and hydrozoans (Cnidaria). Journal of the Marine Biological Association of the United Kingdom 85, 13731380.CrossRefGoogle Scholar
Di Camillo, C., Puce, S., Romagnoli, T., Tazioli, S., Totti, C. and Bavestrello, G. (2006) Coralline algae epibiontic on thecate hydrozoans (Cnidaria). Journal of the Marine Biological Association of the United Kingdom 86, 12851289.CrossRefGoogle Scholar
Dobson, M. and Haynes, J. (1973) Association of foraminifera with hydroids on the deep shelf. Micropaleontology 19, 7890.CrossRefGoogle Scholar
Gillan, D. and Cadée, G.C. (2000) Iron-encrusted diatoms and bacteria epibiotic on Hydrobia ulvae (Gastropoda: Prosobranchia). Journal of Sea Research 43, 8391.CrossRefGoogle Scholar
Guichard, F. and Bourget, E. (1998) Topographic heterogeneity, hydrodynamics, and benthic community structure: a scale-dependent cascade. Marine Ecology Progress Series 171, 5970.CrossRefGoogle Scholar
Holl, S.M., Schaefer, J., Goldberg, W.M., Kramer, K.J., Morgan, T.D. and Hopkins, T.L. (1992) Comparison of black coral skeleton and insect cuticle by a combination of carbon-13 NMR and chemical analyses. Archives of Biochemistry and Biophysics 293, 107111.CrossRefGoogle Scholar
Hudon, C. and Bourget, E. (1981) Initial colonization of artificial substrate, community development and structure studied by scanning electron microscopy. Canadian Journal of Fish and Aquatic Sciences 38, 13711384.CrossRefGoogle Scholar
Hughes, R.G. (1975) The distribution of epizoites on the hydroid Nemertesia antennina (L.) Journal of the Marine Biological Association of the United Kingdom 55, 275294.CrossRefGoogle Scholar
Hughes, R.G. (1978) Production and survivorship of epizoites of the hydroid Nemertesia antennina (L.). Journal of the Marine Biological Association of the United Kingdom 58, 333345.CrossRefGoogle Scholar
Jeuniaux, C. (1963) Chitine et Chitinolyse, un chapitre de la biologie moléculaire. Paris: Masson, pp. 181.Google Scholar
Lagardère, F. and Tardy, J. (1980) Un faciès d'épifaune nouveau, la faciès à Ectopleura dumortieri (van Beneden) et Electra pilosa (Linné). Faune associée, cartographie et évolution saisonnière. Cahier de Biologie Marine 21, 265278.Google Scholar
Lutze, G.F. and Altenbach, A.V. (1988) Rupertina stabilis (Wallich), a highly adapted, suspension feeding foraminifer. Meyniana 40, 5570.Google Scholar
Lutze, G.F. and Thiel, H. (1989) Epibenthic foraminifera from elevated microhabitats, Cibicidoides wuellerstorfi and Planulina ariminensis. Journal of Foraminiferal Research 19, 153158.CrossRefGoogle Scholar
Matsuda, O., Ishikawa, S. and Kawaguchi, K. (1987) Seasonal variation of downward flux of particulate organic matter under the Antarctic fast ice. Proceedings of the NIPR Symposium. Polar Biology 1, 2334.Google Scholar
McGuinness, K.A. and Underwood, A.J. (1986) Habitat structure and the nature of communities on intertidal boulders. Journal of Experimental Marine Biology and Ecology 104, 97123.CrossRefGoogle Scholar
Myklestad, S., Holm-Hansen, O., Vårum, K.L. and Volcani, B.E. (1989) Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. Journal of Plankton Research 11, 763773.CrossRefGoogle Scholar
Patil, J.S. and Anil, A.C. (2000) Epibiotic community on the horseshoe crab Tachypleus gigas. Marine Biology 136, 699713.CrossRefGoogle Scholar
Peletier, H. (1996) Long-term changes in intertidal estuarine diatom assemblages related to reduced input of organic waste. Marine Ecology Progress Series 137, 265271.CrossRefGoogle Scholar
Pimm, S.L. (1984) The complexity and stability of ecosystems. Nature 307, 321326.CrossRefGoogle Scholar
Romagnoli, T., Bavestrello, G., Cucchiari, E., De Stefano, M., Di Camillo, C., Pennesi, C., Puce, S. and Totti, C. (2007) Microalgal communities epibiontic on the marine hydroid Eudendrium racemosum in the Ligurian Sea, during an annual cycle. Marine Biology 151, 537552.CrossRefGoogle Scholar
Stabili, L., Gravili, C., Piraino, S., Boero, F. and Alifano, P. (2006) Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microbial Ecology 52, 603608.CrossRefGoogle ScholarPubMed
Sullivan, M.J. (1981) Community structure of diatoms epiphytic on mangroves and Thalassia in Bimini Harbour, Bahamas. In Ross, R. (ed.) Proceedings of the 6th Diatom Symposium 1980. Recent fossil diatoms Budapest. Königstein: O. Koeltz, pp. 385398.Google Scholar
Sullivan, M.J. (1984) Community structure of epiphytic diatoms from the Gulf Coast of Florida, USA. In Mann, D.G. (ed.) Proceedings of the 7th Diatom Symposium 1982, Philadelphia. Königstein: O. Koeltz, pp. 373384.Google Scholar
Totti, C., Cucchiari, P.E., De Stefano, M., Pennesi, C., Romagnoli, T. and Bavestrello, G. (2007) Seasonal variations of epilithic diatoms on different hard substrates, in the northern Adriatic Sea. Journal of the Marine Biological Association of the United Kingdom 87, 649658.CrossRefGoogle Scholar
Wuchter, C., Marquardt, J. and Krumbein, W.E. (2003) The epizoic diatom community on four bryozoan species from Helgoland (German Bight, North Sea). Helgoland Marine Research 57, 1319.CrossRefGoogle Scholar