Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T14:58:50.034Z Has data issue: false hasContentIssue false

DNA barcoding reveals deep divergent molecular units in Pomatomus saltatrix (Perciformes: Pomatomidae): implications for management and global conservation

Published online by Cambridge University Press:  19 May 2022

Maria Clara G. de Queiroz-Brito*
Affiliation:
Programa de Pós-graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil Laboratório de Genômica Evolutiva e Ambiental, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
Carolina Barros Machado
Affiliation:
Laboratório de Biodiversidade Molecular e Conservação, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
Danielle de Jesus Gama Maia
Affiliation:
Programa de Pós-graduação em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Uedson Pereira Jacobina
Affiliation:
Laboratório de Ictiologia e Conservação, Universidade Federal de Alagoas, Campus Penedo, Penedo, Alagoas, Brazil
Mauro Nirchio
Affiliation:
Escuela de Ciencias aplicadas del Mar, Departamento de Acuicultura, Universidad de Oriente, Porlamar, Venezuela Facultad de Ciencias Agropecuarias, Departamento de Acuicultura, Universidad Técnica de Machala, Machala, Ecuador
Matheus M. Rotundo
Affiliation:
Acervo Zoológico da Universidade Santa Cecília, Santos, São Paulo, Brazil
Rafael de Almeida Tubino
Affiliation:
Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Campus Seropédica, Seropédica, Rio de Janeiro, Brazil
Pedro Fernández Iriarte
Affiliation:
Universidade Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas e Técnicas, CONICET, Argentina
Manuel Haimovici
Affiliation:
Instituto de Oceanografia, Fundação Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
Rodrigo Augusto Torres
Affiliation:
Laboratório de Genômica Evolutiva e Ambiental, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil Departamento de Ambiental, Universidade Tecnológica Federal do Paraná, Campus Londrina, Paraná, Brazil
*
Author for correspondence: Maria Clara G. de Queiroz-Brito, E-mail: [email protected]

Abstract

Pomatomus saltatrix is a high-value marine pelagic coastal fish, that is fished throughout subtropical and temperate coastal waters around the world. Despite its large economic potential, there are no global data on its genetic diversity, which could compromise the conservation of the species. The aim of this study was to analyse the genetic-evolutionary structuring of the species, with the intention of evaluating different genetic P. saltatrix stocks that may indicate potential species. Based on 157 Cytochrome C Oxidase Subunit 1 sequences, the molecular delimitation analyses of species (distance and coalescence methods), as well as the haplotype network, found profound geographic structuring related to five distinct units with high and significant FST pairwise values. The divergence of these molecular units is mostly related to the Pleistocene glacial and interglacial cycles of climatic oscillations. It is hypothesized that one ancestral lineage, adapted to cold water environments, diversified into two lineages, with one more adapted to warmer environments. The high values of global genetic diversity (π = 0.016; h = 0.96) may be related to the existing profound genetic differentiation. Due to the presence of five Molecular Operational Taxonomic Units (MOTUs) within the species it is necessary to employ different regional management strategies. Traits of low haplotype richness and shallow population contraction were identified in the MOTUs V (Venezuela and Brazil) and III (Turkey and Australia), respectively, representing conservation priorities. Other molecular markers, as well as morphological data, should be explored with the aim of defining the taxonomic status of P. saltatrix stocks.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acha, EM, Mianzan, HW, Guerrero, RA, Favero, M and Bava, J (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. Journal of Marine Systems 44, 83105.CrossRefGoogle Scholar
Adams, J, Maslin, M and Thomas, E (1999) Sudden climate transitions during the Quaternary. Progress in Physical Geography 23, 136.CrossRefGoogle Scholar
Almeida, FS, Frantine-Silva, W, Lima, SC, Garcia, DA and Orsi, ML (2018) DNA barcoding as a useful tool for identifying non-native species of freshwater ichthyoplankton in the neotropics. Hydrobiologia 817, 111119.CrossRefGoogle Scholar
Amor, MD, Norman, MD, Roura, A, Leite, TS, Gleadall, IG, Reid, A and Hochberg, FG (2017) Morphological assessment of the Octopus vulgaris species complex evaluated in light of molecular-based phylogenetic inferences. Zoologica Scripta 46, 275288.CrossRefGoogle Scholar
Anderson, AB, Salas, EM, Rocha, LA and Floeter, SR (2017) The recent colonization of south Brazil by the Azores chromis Chromis limbata. Journal of Fish Biology 91, 558573.CrossRefGoogle ScholarPubMed
Andrade, FRS, Afonso, AS, Hazin, FHV, Mendonça, FF and Torres, RA (2021) Population genetics reveals global and regional history of the apex predator Galeocerdo cuvier (Carcharhiniformes) with comments on mitigating shark attacks in North-eastern Brazil. Marine Ecology 42, e12640.Google Scholar
Araujo, GS, Vilasboa, A, Britto, MR, Bernardi, G, von der Heyden, S, Levy, A and Floeter, SR (2020) Phylogeny of the comb-tooth blenny genus Scartella (Blenniiformes: Blenniidae) reveals several cryptic lineages and a trans-Atlantic relationship. Zoological Journal of the Linnean Society 190, 5464.CrossRefGoogle Scholar
Azpelicueta, MDLM, Delpiani, SM, Cione, AL, Oliveira, C, Marceniuk, AP and Díaz de Astarloa, JM (2019) Morphology and molecular evidence support the validity of Pogonias courbina (Lacepède, 1803) (Teleostei: Sciaenidae), with a redescription and neotype designation. PLoS ONE 14, e0216280.CrossRefGoogle ScholarPubMed
Barbuto, M, Galimberti, A, Ferri, E, Labra, M, Malandra, R, Galli, P and Casiraghi, M (2010) DNA barcoding reveals fraudulent substitutions in shark seafood products: the Italian case of “palombo” (Mustelus spp.). Food Research International 43, 376381.CrossRefGoogle Scholar
Batista, JDS (2010) Caracterização genética da dourada- Brachyplatystoma rousseauxii, Castelnau, 1855 (Siluriformes: Pimelodidae) na Amazônia por meio de marcadores moleculares mitocondriais e microssatélites: subsídios para conservação e manejo. Manaus: Instituto Nacional de Pesquisas da Amazônia.Google Scholar
Bender, MG, Machado, GR, Azevedo-Silva, PJ, Floeter, SR, Monteiro-Netto, C, Luiz, OJ and Ferreira, CE (2014) Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9, e110332.CrossRefGoogle ScholarPubMed
Benevides, EA, Vallinoto, MNS, Fetter Filho, AFH, De Souza, JRB, Silva-Oliveira, G, Freitas, MO, Ferreira, BP, Bertoncini, AA, Hostim-Silva, M, Blanchard, F and Torres, RA (2014) When physical oceanography meets population genetics: the case study of the genetic/evolutionary discontinuity in the endangered goliath grouper (Epinephelus itajara; Perciformes: Epinephelidae) with comments on the conservation of the species. Biochemical Systematics and Ecology 56, 255266.CrossRefGoogle Scholar
Berbel-Filho, WM, Ramos, TP, Jacobina, UP, Maia, DJ, Torres, RA and Lima, SM (2018) Updated checklist and DNA barcode-based species delimitations reveal taxonomic uncertainties among freshwater fishes from the mid-north-eastern Caatinga ecoregion, north-eastern Brazil. Journal of Fish Biology 93, 311323.CrossRefGoogle ScholarPubMed
Betancur-R, R, Broughton, RE, Wiley, EO, Carpenter, K, López, JA, Li, C and Zhang, F (2013) The tree of life and a new classification of bony fishes. PLoS Currents 5, ecurrents.tol.53ba26640df0ccaee75bb165c8c26288.Google Scholar
Bickford, D, Lohman, DJ, Sodhi, NS, Ng, PK, Meier, R, Winker, K, Ingram, KK and Das, I (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22, 148155.CrossRefGoogle ScholarPubMed
Bizsel, C, Yokes, B, Pollard, D, Kara, MH, Bariche, M and Quignard, JP (2011) Pomatomus saltatrix. The IUCN Red List of Threatened Species 2011: e.T190279A8784495. (Accessed online 26 November 2020).Google Scholar
Blaxter, M, Mann, J, Chapman, T, Thomas, F, Whitton, C, Floyd, R and Abebe, E (2005) Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 19351943.CrossRefGoogle ScholarPubMed
Bouckaert, R, Heled, J, Kühnert, D, Vaughan, T, Wu, CH, Xie, D, Suchard, MA, Rambaut, A and Drummond, AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.Google ScholarPubMed
Broadhurst, MK, Butcher, PA and Cullis, BR (2012) Catch-and-release angling mortality of south-eastern Australian Pomatomus saltatrix. African Journal of Marine Science 34, 289295.CrossRefGoogle Scholar
Brown, SD, Collins, RA, Boyer, S, Lefort, MC, Malumbres-Olarte, JA, Vink, CJ and Cruickshank, RH (2012) Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Molecular Ecology Resources 12, 562565.CrossRefGoogle Scholar
Carpenter, KE, Ralph, G, Pina Amargos, F, Collette, BB, Singh-Renton, S, Aiken, KA, Dooley, J and Marechal, J (2015) Pomatomus saltatrix (errata version published in 2017). The IUCN Red List of Threatened Species 2015: e.T190279A115314064. Available at https://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T190279A19929357.en (Accessed online 30 July 2020).CrossRefGoogle Scholar
Carvalho, DC, Guedes, D, da Gloria Trindade, M, Coelho, RMS and de Lima Araujo, PH (2017) Nationwide Brazilian governmental forensic programme reveals seafood mislabelling trends and rates using DNA barcoding. Fisheries Research 191, 3035.CrossRefGoogle Scholar
Carvalho, DC, Palhares, RM, Drummond, MG and Frigo, TB (2015) DNA barcoding identification of commercialized seafood in South Brazil: a governmental regulatory forensic program. Food Control 50, 784788.CrossRefGoogle Scholar
Cengiz, Ö, Özekinci, U, Öztekin, A and Kumaova, CA (2013) Growth parameters and mortality of bluefish (Pomatomus saltatrix Linnaeus, 1766) from Gallipoli peninsula and Dardanelles (northeastern Mediterranean, Turkey). Marine Science and Technology Bulletin 2, 17.Google Scholar
Ceyhan, T, Akyol, O, Ayaz, A and Juanes, F (2007) Age, growth, and reproductive season of bluefish (Pomatomus saltatrix) in the Marmara region, Turkey. ICES Journal of Marine Science 64, 531536.Google Scholar
Chappell, J and Shackleton, N (1986) Oxygen isotopes and sea level. Nature 324, 137140.Google Scholar
Chen, W, Li, C, Chen, F, Li, Y, Yang, J, Li, J and Li, X (2020) Phylogeographic analyses of a migratory freshwater fish (Megalobrama terminalis) reveal a shallow genetic structure and pronounced effects of sea-level changes. Gene 737, 144478.CrossRefGoogle ScholarPubMed
Clement, MJ, Snell, Q, Walker, P, Posada, D and Crandall, KA (2002) TCS: estimating gene genealogies. Inipdps 3, 184.Google Scholar
Collette, BB and Abad-Uribarren, A (2015) Pomatomus saltatrix. The IUCN Red List of Threatened Species 2015: e.T190279A80469837. (Accessed online 26 November 2020).Google Scholar
Cowen, RK and Sponaugle, S (2009) Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443466.CrossRefGoogle ScholarPubMed
Crow, KD, Munehara, H, Kanamoto, Z, Balanov, A, Antonenko, D and Bernardi, G (2007) Maintenance of species boundaries despite rampant hybridization between three species of reef fishes (Hexagrammidae): implications for the role of selection. Biological Journal of the Linnean Society 91, 135147.CrossRefGoogle Scholar
Damasceno, JS, Siccha-Ramirez, R, Morales, MJ, Oliveira, C, Torres, RA, Costa, EN, Silva-Oliveira, GC, Vallinoto, M, Machado, LF, Tosta, VC and Farro, APC (2015) Mitochondrial DNA evidences reflect an incipient population structure in Atlantic goliath grouper (Epinephelus itajara, Epinephelidae) in Brazil. Scientia Marina 79, 419429.CrossRefGoogle Scholar
da Silva Oliveira, FA, Michonneau, F and da Cruz Lotufo, TM (2017) Molecular phylogeny of Didemnidae (Ascidiacea: Tunicata). Zoological Journal of the Linnean Society 180, 603612.CrossRefGoogle Scholar
Da-Silva, R, Veneza, I, Sampaio, I, Araripe, J, Schneider, H and Gomes, G (2015) High levels of genetic connectivity among populations of yellowtail snapper, Ocyurus chrysurus (Lutjanidae–Perciformes), in the western South Atlantic revealed through multilocus analysis. PLoS ONE 10, e0122173.CrossRefGoogle ScholarPubMed
DeBiasse, MB, Richards, VP, Shivji, MS and Hellberg, ME (2016) Shared phylogeographical breaks in a Caribbean coral reef sponge and its invertebrate commensals. Journal of Biogeography 43, 21362146.Google Scholar
Díaz-Viloria, N, Sánchez-Velasco, L and Pérez-Enríquez, R (2012) Recent population expansion in the evolutionary history of the Californian anchovy Engraulis mordax. Hidrobiológica 22, 258266.Google Scholar
Domingues, RR, Bruels, CC, Gadig, OB, Chapman, DD, Hilsdorf, AW and Shivji, MS (2018) Genetic connectivity and phylogeography of the night shark (Carcharhinus signatus) in the western Atlantic Ocean: implications for conservation management. Aquatic Conservation: Marine and Freshwater Ecosystems 29, 102114.CrossRefGoogle Scholar
Drummond, AJ, Rambaut, A, Shapiro, BE and Pybus, OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution 22, 11851192.CrossRefGoogle ScholarPubMed
Drummond, AJ, Suchard, MA, Xie, D and Rambaut, A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 19691973.CrossRefGoogle ScholarPubMed
Dunlop, SW and Mann, BQ (2012) An assessment of participation, catch and effort in the KwaZulu-Natal shore-based marine line fishery, with comments on management effectiveness. African Journal of Marine Science 34, 479496.CrossRefGoogle Scholar
Eldredge, N and Cracraft, J (1980) Phylogenetic Patterns and the Evolutionary Process. New York, NY: Columbia University Press.Google Scholar
Excoffier, L, Laval, G and Schneider, S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1, 4750.CrossRefGoogle Scholar
Fernández-Álvarez, , Braid, HE, Nigmatullin, CM, Bolstad, KS, Haimovici, M, Sánchez, P and Villanueva, R (2020) Global biodiversity of the genus Ommastrephes (Ommastrephidae: Cephalopoda): an allopatric cryptic species complex. Zoological Journal of the Linnean Society 190, 460482.CrossRefGoogle Scholar
Fišer, C, Robinson, CT and Malard, F (2018) Cryptic species as a window into the paradigm shift of the species concept. Molecular Ecology 27, 613635.CrossRefGoogle ScholarPubMed
Floeter, SR, Rocha, LA, Robertson, DR, Joyeux, JC, Smith-vaniz, WF, Wirtz, P and Brito, A (2008) Atlantic reef fish biogeography and evolution. Journal of Biogeography 35, 2247.Google Scholar
Frankham, R, Ballou, JD and Briscoe, DA (2008) Fundamentos de genética da conservação. Ribeirão Preto: Sociedade Brasileira de Genética, 224 pp.Google Scholar
Freitas, ASS, Sampaio, R and Schneider, IH (2017) The mitochondrial control region reveals genetic structure in southern kingcroaker populations on the coast of the Southwestern Atlantic. Fisheries Research 191, 8794.CrossRefGoogle Scholar
Gaither, MR and Rocha, LA (2013) Origins of species richness in the Indo-Malay-Philippine biodiversity hotspot: evidence for the centre of overlap hypothesis. Journal of Biogeography 40, 16381648.Google Scholar
Giglio, VJ, Luiz, OJ and Gerhardinger, LC (2015) Depletion of marine megafauna and shifting baselines among artisanal fishers in eastern Brazil. Animal Conservation 18, 348358.CrossRefGoogle Scholar
Goodbred, CO and Graves, JE (1996) Genetic relationships among geographically isolated populations of bluefish (Pomatomus saltatrix). Marine and Freshwater Research 47, 347355.CrossRefGoogle Scholar
Gouveia, NA, Gherardi, DFM and Aragão, LEOC (2019) The role of the Amazon River plume on the intensification of the hydrological cycle. Geophysical Research Letters 46, 1222112229.CrossRefGoogle Scholar
Grant, WS (2015) Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. Journal of Heredity 106, 333346.CrossRefGoogle ScholarPubMed
Haimovici, M and Krug, LC (1996) Life history and fishery of the enchova, Pomatomus saltatrix, in Southern Brazil. Marine and Freshwater Research 47, 357363.CrossRefGoogle Scholar
Hall, TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 9598.Google Scholar
Hall, T, Biosciences, I and Carlsbad, C (2011) BioEdit: an important software for molecular biology. GERF Bulletin Biosciences 2, 6061.Google Scholar
Hare, JA and Cowen, RK (1996) Transport mechanisms of larval and pelagic juvenile bluefish (Pomatomus saltatrix) from South Atlantic Bight spawning grounds to Middle Atlantic Bight nursery habitats. Limnology and Oceanography 41, 12641280.CrossRefGoogle Scholar
Healey, AJ, McKeown, NJ, Taylor, AL, Provan, J, Sauer, W, Gouws, G and Shaw, PW (2018) Cryptic species and parallel genetic structuring in Lethrinid fish: implications for conservation and management in the southwest Indian Ocean. Ecology and Evolution 8, 21822195.CrossRefGoogle ScholarPubMed
Hebert, PD, Cywinska, A, Ball, SL and Dewaard, JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270, 313321.CrossRefGoogle ScholarPubMed
Herbert, TD, Lawrence, KT, Tzanova, A, Peterson, LC, Caballero-Gill, R and Kelly, CS (2016) Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience 9, 843847.CrossRefGoogle Scholar
Hernández, IIC, Barandica, JC and Pizarro, AA (2018) Genetic variation and genetic structure of Caranx hippos (Teleostei: Carangidae) in the Colombian Caribbean. Revista de Biología Tropical 66, 122135.CrossRefGoogle Scholar
Herold, N, Huber, M, Muller, RD and Seton, M (2012) Modeling the Miocene climatic optimum: ocean circulation. Paleoceanography 27, PA1209.CrossRefGoogle Scholar
Hobbs, C (2009) York river geology. Journal of Coastal Research 10057, 1016.CrossRefGoogle Scholar
Hoey, JA and Pinsky, ML (2018) Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolutionary Applications 11, 17321747.Google ScholarPubMed
Hofreiter, M and Stewart, J (2009) Ecological change, range fluctuations and population dynamics during the Pleistocene. Current Biology 19, 584594.CrossRefGoogle ScholarPubMed
Hubert, N, Delrieu-Trottin, E, Irisson, JO, Meyer, C and Planes, S (2010) Identifying coral reef fish larvae through DNA barcoding: a test case with the families Acanthuridae and Holocentridae. Molecular Phylogenetics and Evolution 55, 11951203.CrossRefGoogle ScholarPubMed
Huelsenbeck, JP, Ronquist, F, Nielsen, R and Bollback, JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science (New York, N.Y.) 294, 23102314.CrossRefGoogle ScholarPubMed
Jacobina, UP, Lima, SMQ, Maia, DG, Souza, G, Batalha-Filho, H and Torres, RA (2018) DNA barcode sheds light on systematics and evolution of neotropical freshwater trahiras. Genetica 146, 505515.Google ScholarPubMed
Jacobina, UP, Torres, RA, Roberto, P, de Mello Affonso, A, dos Santos, EV, Calado, LL and de Araújo Bitencourt, J (2020) DNA barcoding reveals cryptic diversity and peculiar phylogeographic patterns in mojarras (Perciformes: Gerreidae) from the Caribbean and South-western Atlantic. Journal of the Marine Biological Association of the United Kingdom 100, 277283.CrossRefGoogle Scholar
Jones, M, Ghoorah, A and Blaxter, M (2011) jMOTU and taxonerator: turning DNA barcode sequences into annotated operational taxonomic units. PLoS ONE 6, e19259.CrossRefGoogle ScholarPubMed
Juanes, F, Buckel, J and Scharf, F (2002) Symposium review: biology, ecology and life history of bluefish. Reviews in Fish Biology and Fisheries 12, 429430.CrossRefGoogle Scholar
Juanes, F, Hare, JA and Miskiewicz, AG (1996) Comparing early life history strategies of Pomatomus saltatrix: a global approach. Marine and Freshwater Research 47, 365379.Google Scholar
Kapli, P, Lutteropp, S, Zhang, J, Kobert, K, Pavlidis, P, Stamatakis, A and Flouri, T (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 16301638.CrossRefGoogle ScholarPubMed
Karas, C, Nürnberg, D, Bahr, A, Groeneveld, J, Herrle, JO, Tiedemann, R and Demenocal, PB (2017) Pliocene oceanic seaways and global climate. Scientific Reports 7, 18.CrossRefGoogle ScholarPubMed
Kim, S, Lee, Y, Mutanen, M, Seung, J and Lee, S (2020) High functionality of DNA barcodes and revealed cases of cryptic diversity in Korean curved-horn moths (Lepidoptera: Gelechioidea). Scientific Reports 10, 112.Google ScholarPubMed
Kimura, M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Kumar, S, Stecher, G, Li, M, Knyaz, C and Tamura, K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35, 15471549.CrossRefGoogle ScholarPubMed
Leigh, JW and Bryant, D (2015) Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6, 11101116.CrossRefGoogle Scholar
Levin, HL (ed.) (2009) Cenozoic events. In The Earth Through Time. Chichester: John Wiley & Sons, Hoboken, New Jersey, United States of America, pp. 469503.Google Scholar
Librado, P and Rozas, J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics (Oxford, England) 25, 14511452.Google ScholarPubMed
Liedke, AM, Pinheiro, HT, Floeter, SR and Bernardi, G (2020) Phylogeography of the banded butterflyfish, Chaetodon striatus, indicates high connectivity between biogeographic provinces and ecosystems in the western Atlantic. Neotropical Ichthyology 18, e190054.Google Scholar
Lucinda, PHF (2008) Systematics and biogeography of the genus Phalloceros Eigenmann, 1907 (Cyprinodontiformes: Poeciliidae: Poeciliinae), with the description of twenty-one new species. Neotropical Ichthyology 6, 113158.CrossRefGoogle Scholar
Ludt, WB and Rocha, LA (2015) Shifting seas: the impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. Journal of Biogeography 42, 2538.CrossRefGoogle Scholar
Luiz, OJ, Madin, JS, Robertson, DR, Rocha, LA, Wirtz, P and Floeter, SR (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proceedings of the Royal Society B: Biological Sciences 279, 10331040.CrossRefGoogle ScholarPubMed
Luz, LA, Reis, LL, Sampaio, I, Barros, MC and Fraga, E (2015) Genetic differentiation in the populations of red piranha, Pygocentrus nattereri Kner, 1860 (Characiformes: Serrasalminae), from the river basins of northeastern Brazil. Brazilian Journal of Biology 75, 838845.CrossRefGoogle ScholarPubMed
Machado-Schiaffino, G, Juanes, F and Garcia-Vazquez, E (2010) Introgressive hybridization in North American hakes after secondary contact. Molecular Phylogenetics and Evolution 55, 552558.CrossRefGoogle ScholarPubMed
Machado, LF, Damasceno, JS, Bertoncini, ÁA, Farro, AP, Hostim-Silva, M and Oliveira, C (2017 b) Population genetic structure and demographic history of the spadefish, Chaetodipterus faber (Ephippidae) from Southwestern Atlantic. Journal of Experimental Marine Biology and Ecology 487, 4552.CrossRefGoogle Scholar
Machado, CD, Ishizuka, TK, Freitas, PD, Valiati, VH and Galetti, PM Jr (2017 a) DNA barcoding reveals taxonomic uncertainty in Salminus (Characiformes). Systematics and Biodiversity 15, 372382.CrossRefGoogle Scholar
Magris, RA, Costa, MD, Ferreira, CE, Vilar, CC, Joyeux, JC, Creed, JC, Copertino, MS, Horta, PA, Sumida, PYG, Francini-Filho, RB and Floeter, SR (2020) A blueprint for securing Brazil's marine biodiversity and supporting the achievement of global conservation goals. Diversity and Distributions 27, 198215.CrossRefGoogle Scholar
Mamet, LNG, Daglio, LG and García-De León, FJ (2019) High genetic differentiation in the edible cannonball jellyfish (Cnidaria: Scyphozoa: Stomolophus spp.) from the Gulf of California, Mexico. Fisheries Research 219, 105328.CrossRefGoogle Scholar
Mattos, G, Seixas, VC and Paiva, PC (2019) Comparative phylogeography and genetic connectivity of two crustacean species with contrasting life histories on South Atlantic sandy beaches. Hydrobiologia 826, 319330.CrossRefGoogle Scholar
Mayr, E (1893) The biological species concept. In Wheeler, QD and Meier, R (eds), Species Concepts and Phylogenetic Theory: A Debate. New York, NY: Columbia University Press, pp. 1729.Google Scholar
McKeown, NJ, Gwilliam, MP, Healey, AJ, Skujina, I, Potts, WM, Sauer, WH and Shaw, PW (2020) Deep phylogeographic structure may indicate cryptic species within the Sparid genus Spondyliosoma. Journal of Fish Biology 96, 14341443.CrossRefGoogle ScholarPubMed
Meyer, CP and Paulay, G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology 3, e422.CrossRefGoogle ScholarPubMed
Miralles, L, Juanes, F and Garcia-Vazquez, E (2014 a) Interoceanic sex-biased migration in bluefish. Transactions of the American Fisheries Society 143, 13081315.CrossRefGoogle Scholar
Miralles, L, Juanes, F, Pardiñas, AF and Garcia-Vazquez, E (2014 b) Paleoclimate shaped bluefish structure in the northern hemisphere. Fisheries 39, 578586.CrossRefGoogle Scholar
Monaghan, MT, Wild, R, Elliot, M, Fujisawa, T, Balke, M, Inward, DJ, Lees, DC, Ranaivosolo, R, Eggleton, P, Barraclough, TG and Vogler, AP (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58, 298311.CrossRefGoogle ScholarPubMed
Moraes, LJCL, Pavan, D and Lima, AP (2019) A new nurse frog of Allobates masniger-nidicola complex (Anura, Aromobatidae) from the east bank of Tapajós River, eastern Amazonia. Zootaxa 4648, 401434.CrossRefGoogle Scholar
Moura, RL, Amado-Filho, GM, Moraes, FC, Brasileiro, PS, Salomon, PS, Mahiques, MM and Brito, FP (2016) An extensive reef system at the Amazon River mouth. Science Advances 2, e1501252.CrossRefGoogle ScholarPubMed
Nelson, G (1989) Species and taxa: systematics and evolution. In Otte, D and Endler, JA (eds), Speciation and its Consequences. Sunderland, MA: Sinauer Associates, pp. 6081.Google Scholar
Nelson, JS, Grande, TC and Wilson, MV (2016) Fishes of the World, 5th Edn. Chichester: John Wiley & Sons, Hoboken, New Jersey, United State of America, 752 pp.CrossRefGoogle Scholar
Neves, A, Vieira, AR, Sequeira, V, Paiva, RB, Gordo, LS and Paulo, OS (2020) Highly regional population structure of Spondyliosoma cantharus depicted by nuclear and mitochondrial DNA data. Scientific Reports 10, 111.CrossRefGoogle ScholarPubMed
Nielsen, EE, Nielsen, PH, Meldrup, D and Hansen, MM (2004) Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Molecular Ecology 13, 585595.CrossRefGoogle ScholarPubMed
Nunes, FL, Van Wormhoudt, A, Faroni-Perez, L and Fournier, J (2017) Phylogeography of the reef-building polychaetes of the genus Phragmatopoma in the western Atlantic Region. Journal of Biogeography 44, 16121625.CrossRefGoogle Scholar
Nykänen, M, Dillane, E, Reid, D and Rogan, E (2020) Genetic methods reveal high diversity and no evidence of stock structure among cuckoo rays (Leucoraja naevus) in the northern part of Northeast Atlantic. Fisheries Research 232, 105715.CrossRefGoogle Scholar
Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, Minchin, PR, O'Hara, RB, Simpson, GL, Solymos, P, Stevens, MHH, Szoecs, E and Wagner, H (2018) vegan: community ecology package. R package version 2.5–2. Available at https://CRAN.R-project.org/package=vegan.Google Scholar
Palumbi, SR (1992) Marine speciation on a small planet. Trends in Ecology & Evolution 7, 114118.CrossRefGoogle ScholarPubMed
Pardiñas, AF, Campo, D, Pola, IG, Miralles, L, Juanes, F and Garcia-Vazquez, E (2010) Climate change and oceanic barriers: genetic differentiation in Pomatomus saltatrix (Pisces: Pomatomidae) in the North Atlantic Ocean and the Mediterranean Sea. Journal of Fish Biology 77, 19931998.CrossRefGoogle ScholarPubMed
Pauly, D, Zeller, D and Palomares, MLD (eds) (2020) Sea Around Us: Concepts, Design and Data. Available at http://seaaroundus.org (Accessed online 30 July 2020).Google Scholar
Peluso, L, Tascheri, V, Nunes, FL, Castro, CB, Pires, DO and Zilberberg, C (2018) Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Scientific Reports 8, 112.CrossRefGoogle Scholar
Pina Amargos, F and Collette, B (2015) Pomatomus saltatrix. The IUCN Red List of Threatened Species 2015: e.T190279A45797527. (Accessed online 26 November 2020).Google Scholar
Piñeros, VJ and Gutiérrez-Rodríguez, C (2017) Population genetic structure and connectivity in the widespread coral-reef fish Abudefduf saxatilis: the role of historic and contemporary factors. Coral Reefs 36, 877890.CrossRefGoogle Scholar
Pinto, CM, Ojala-Barbour, R, Brito, J, Menchaca, A, Carvalho, AL, Weksler, M, Amato, G and Lee, TE Jr (2018) Rodents of the eastern and western slopes of the Tropical Andes: phylogenetic and taxonomic insights using DNA barcodes. Therya 9, 1527.CrossRefGoogle Scholar
Planes, S (1988) Genetic diversity and dispersal capabilities in marine fish. In Hecht, MK, MacIntyre, RJ and Clegg, MT (eds), Evolutionary Biology. Boston, MA: Springer, pp. 253298.CrossRefGoogle Scholar
Pons, J, Barraclough, TG, Gomez-Zurita, J, Cardoso, A, Duran, DP, Hazell, S, Kamoun, S, Sumlin, WD and Vogler, AP (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55, 595609.CrossRefGoogle ScholarPubMed
Posada, D (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Puillandre, N, Brouillet, S and Achaz, G (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21, 609620.CrossRefGoogle ScholarPubMed
Purdy, R, Applegate, SV, McLellan, SM, Meyer, J and Slaughter, R (2001) The Neogene sharks, rays, and bony fishes from Lee Creek Mine, Aurora, North Carolina. Smithsonian Contributions to Paleobiology 90, 71202.Google Scholar
Rambaut, A, Suchard, MA and Drummond, AJ (2009) Tracer v. 1.5. Available at http://tree.bio.ed.ac.uk/software/tracer/.Google Scholar
Ratnasingham, S and Hebert, PD (2013) A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PloS one 8, e66213.CrossRefGoogle ScholarPubMed
R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at https://www.R-project.org/.Google Scholar
Reid, NM and Carstens, BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology 12, 14712148.CrossRefGoogle ScholarPubMed
Reis, AT, Maia, RMC, Silva, CG, Rabineau, M, Guerra, JV, Gorini, C, Ayres, A, Arantes-Oliveira, R, Benabdellouahed, M, Simões, I and Tardin, R (2013) Origin of step-like and lobate seafloor features along the continental shelf off Rio de Janeiro State, Santos basin-Brazil. Geomorphology 203, 2545.CrossRefGoogle Scholar
Rogers, AR and Harpending, H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 552569.Google ScholarPubMed
Ronquist, F and Huelsenbeck, JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 15721574.Google ScholarPubMed
Santos, S, Hrbek, T, Farias, IP, Schneider, H and Sampaio, I (2006) Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Molecular Ecology 15, 43614373.CrossRefGoogle Scholar
Satoh, TP, Miya, M, Mabuchi, K and Nishida, M (2016) Structure and variation of the mitochondrial genome of fishes. BMC Genomics 17, 120.CrossRefGoogle ScholarPubMed
Schilling, HT, Smith, JA, Stewart, J, Everett, JD, Hughes, JM and Suthers, IM (2019) Reduced exploitation is associated with an altered sex ratio and larger length at maturity in southwest Pacific (east Australian) Pomatomus saltatrix. Marine Environmental Research 147, 7279.CrossRefGoogle ScholarPubMed
Silvano, RAM and Begossi, A (2010) What can be learned from fishers? An integrated survey of fishers’ local ecological knowledge and bluefish (Pomatomus saltatrix) biology on the Brazilian coast. Hydrobiologia 637, 3.CrossRefGoogle Scholar
Slatkin, M (2018) Gene flow and population structure. In Real, L (ed.), Ecological Genetics. Princeton University Press, Princeton, New Jersey, United State of America, pp. 417.Google Scholar
Souza, CR, Affonso, PRM, Bitencourt, JA, Sampaio, I and Carneiro, PL (2018) Species validation and cryptic diversity in the Geophagus brasiliensis Quoy & Gaimard, 1824 complex (Teleostei, Cichlidae) from Brazilian coastal basins as revealed by DNA analyses. Hydrobiologia 809, 309321.CrossRefGoogle Scholar
Souza, AS, Dias-Junior, EA, Galetti, PM Jr, Machado, EG, Pichorim, M and Molina, WF (2015) Wide-srange genetic connectivity of Coney, Cephalopholis fulva (Epinephelidae), through oceanic islands and continental Brazilian coast. Anais da Academia Brasileira de Ciências 87, 121136.CrossRefGoogle ScholarPubMed
Soykan, O (2019) Evaluation on minimum landing size regulations in Turkish marine fisheries from scientific perspective. Turkish Journal of Agriculture - Food Science and Technology 7(sp1), 2731.CrossRefGoogle Scholar
Stewart, JR, Lister, AM, Barnes, I and Dalén, L (2009) Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society B: Biological Sciences 277, 661671.CrossRefGoogle ScholarPubMed
Thompson, JD, Higgins, DG and Gibson, TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Tortonese, E (1986) Pomatomidae. In Whitehead, PJP, Bauchot, ML, Hureau, JC, Nielsen, J and Tortonese, E (eds), Fishes of the Northeastern Atlantic and Mediterranean, Vol. 2. Bungay: UNESCO.Google Scholar
Turan, C, Oral, M, Öztürk, B and Düzgüneş, E (2006) Morphometric and meristic variation between stocks of bluefish (Pomatomus saltatrix) in the Black, Marmara, Aegean and northeastern Mediterranean Seas. Fisheries Research 79, 139147.CrossRefGoogle Scholar
Ulman, A (2014) Actual and Perceived Decline of Fishery Resources in Turkey and Cyprus: A History with Emphasis on Shifting Baselines (Doctoral dissertation). University of British Columbia, Vancouver, Canada.Google Scholar
van Velzen, R, Bakker, FT and van Loon, JJ (2007) DNA barcoding reveals hidden species diversity in Cymothoe (Nymphalidae). Proceedings of the Netherlands Entomological Society Meeting 18, 95103.Google Scholar
Wang, IJ and Bradburd, GS (2014) Isolation by environment. Molecular Ecology 23, 56495662.CrossRefGoogle ScholarPubMed
Ward, RD, Zemlak, TS, Innes, BH, Last, PR and Hebert, PD (2005) DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 18471857.CrossRefGoogle ScholarPubMed
Wilk, SJ (1977) Biological and Fisheries Data on Bluefish, Pomatomus saltatrix (Linnaeus). Sandy Hook Laboratory, Northeast Fisheries Center, National Marine Fisheries Service 11, 54.Google Scholar
Zhang, J, Kapli, P, Pavlidis, P and Stamatakis, A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics (Oxford, England) 29, 28692876.Google ScholarPubMed
Zhao, D, Kong, L, Yu, H and Li, Q (2018) Cryptic genetic diversity of Neverita didyma in the coast of China revealed by phylogeographic analysis: implications for management and conservation. Conservation Genetics 19, 275282.CrossRefGoogle Scholar
Supplementary material: File

Queiroz-Brito et al. supplementary material

Queiroz-Brito et al. supplementary material
Download Queiroz-Brito et al. supplementary material(File)
File 822.8 KB