Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T08:12:10.907Z Has data issue: false hasContentIssue false

Diet of the amphi-Atlantic scaphopod Fissidentalium candidum in the deep waters of Campos Basin, south-eastern Brazil

Published online by Cambridge University Press:  21 April 2016

Renato Junqueira De Souza Dantas*
Affiliation:
Departamento de Oceanografia e Limnologia, Laboratório de Bentos e Cefalópodes – Via Costeira Senador Dinarte Medeiros Mariz s/n, Universidade Federal do Rio Grande do Norte, Mãe Luiza, Natal, RN 59014-002, Brasil
Lazaro Luiz Mattos Laut
Affiliation:
Laboratório de Micropaleontologia – Av. Pasteur, Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, 458, sala 500, Urca, Rio de Janeiro, RJ 22290-240, Brasil
Carlos Henrique Soares Caetano
Affiliation:
Laboratório de Zoologia de Invertebrados Marinhos – Av. Pasteur, Universidade Federal do Estado do Rio de Janeiro, Instituto de Biociências, 458, sala 309, Urca, Rio de Janeiro, RJ 22290-240, Brasil
*
Correspondence should be addressed to:R.J.S. Dantas, Departamento de Oceanografia e Limnologia, Laboratório de Bentos e Cefalópodes – Via Costeira Senador Dinarte Medeiros Mariz s/n, Universidade Federal do Rio Grande do Norte, Mãe Luiza, Natal, RN 59014-002, Brasil email: [email protected]

Abstract

Specimens of Fissidentalium candidum collected at Campos Basin, south-eastern Brazil, had their diet investigated in order to assess its feeding habits. Benthic prey exceeded the planktonic ones as expected and Foraminifera constituted the most frequent prey taxa, comprising about 99.5% of the scaphopod diet; the remaining components included a few molluscs (gastropods, bivalves and scaphopods), a nematode, an ostracod crustacean, fish otoliths, unknown partial organisms and inorganic material (e.g. sediment grains and polymetallic nodules). Amongst the species previously studied, F. candidum stood out by presenting the highest dietary diversity (H = 3.35) and species richness (N = 118). Predator and prey dimensions were not correlated and no spatial variation was observed in the diet amongst the three collection sites in the mid-slope of Campos Basin. Generalism, high rate of rare or unimportant species and high contribution of within-phenotype component to the niche width were important features of the trophic ecology of F. candidum. Inhabiting the deep water of Campos Basin, this dentaliid obtained most of its energy from the benthic microfauna, being a specialized foram predator with moderate preference for, and moderate selection against, several species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amundsen, P.A., Gabler, H.M. and Staldvik, F.J. (1996) A new approach to graphical analysis of feeding strategy from stomach contents data – modification of the Costello (1990) method. Journal of Fish Biology 48, 607614.Google Scholar
Barker, R.W. (1960) Taxonomic notes on the species figured by H.B. Brady in his ‘Report on the Foraminifera dredged by H.M.S. Challenger during the years 1873–1876’. Society of Economic Paleontologists and Mineralogists, Special Publication, no. 9, 238 pp.Google Scholar
Bilyard, G.R. (1974) The feeding habits and ecology of Dentalium entale stimpsoni Henderson (Mollusca: Scaphopoda). The Veliger 17, 126138.Google Scholar
Boltovskoy, E. (1959) Recent Foraminifera of southern Brazil and their relation with those of Argentina and the West Indies. Buenos Aires: Secretaría de Marina, Servicio de Hidrografía Naval.Google Scholar
Boltovskoy, E., Giussani, G., Watanabe, S. and Wright, R. (1980) Atlas of benthic shelf Foraminifera of the Southwest Atlantic. The Hague: Dr. W. Junk Publishers.CrossRefGoogle Scholar
Cushman, J.A. (1969) Foraminifera: their classification and economic use, 4th edition. Cambridge, MA: Harvard University Press.Google Scholar
Dinamani, P. (1964a) Burrowing behavior of Dentalium . Biological Bulletin 126, 2832.CrossRefGoogle Scholar
Dinamani, P. (1964b) Feeding in Dentalium conspicuum . Proceedings of the Malacological Society of London 36, 15.Google Scholar
Fontoura-da-Silva, V., Dantas, R.J.S. and Caetano, C.H.S. (2013) Foraging tactics in Mollusca: a review of the feeding behavior of their most obscure classes (Aplacophora, Polyplacophora, Monoplacophora, Scaphopoda and Cephalopoda). Oecologia Australis 17, 358373.CrossRefGoogle Scholar
Gainey, L.F. (1972) The use of the foot and the captacula in the feeding of Dentalium . The Veliger 15, 2934.Google Scholar
Glover, E., Taylor, J. and Whittaker, J. (2003) Distribution, abundance and foraminiferal diet of an intertidal scaphopod, Laevidentalium lubricatum, around the Burrup Peninsula, Dampier, Western Australia. In Wells, F.E., Walker, D.I. and Jones, D.S. (eds) The marine flora and fauna of Dampier, Western Australia. Perth, WA: Western Australia Museum, pp. 225240.Google Scholar
Gudmundsson, G., Engelstad, K., Steiner, G. and Svavarsson, J. (2003) Diets of four deep-water scaphopod species (Mollusca) in the North Atlantic and the Nordic Seas. Marine Biology 142, 11031112.Google Scholar
Holbourn, A., Henderson, A.S. and MacLeod, N. (2013) Atlas of benthic Foraminifera. Chichester and London: Wiley-Blackwell and Natural History Museum.CrossRefGoogle Scholar
Kirchman, D.L. (2000) Microbial ecology of the oceans. New York, NY: John Wiley and Sons.Google Scholar
Langer, M.R., Lipps, J.H. and Moreno, G. (1995) Predation on foraminifera by the dentaliid deep-sea scaphopod Fissidentalium megathyris . Deep-Sea Research Part I 42, 849857.Google Scholar
Laut, L.L.M. and Laut, V.M. (2012) Bactérias, diatomáceas e foraminíferos do sedimento. In Meniconi, M.F.G., Silva, T.A., Lima, S.O.F., Lima, E.F.A., Lavrado, H.P. and Figueiredo, A.G. Jr. (eds) Baía de Guanabara (vol. II – Biodiversidade). Rio de Janeiro: Petrobrás, pp. 271291.Google Scholar
Loeblich, A.R. and Tappan, H. (1988) Foraminiferal genera and their classification. New York, NY: Van Nostrand Reinhold Company.Google Scholar
Moodley, L., Middelburg, J.J., Boschker, H.T.S., Duineveld, G.C.A., Pel, R., Herman, P.M.J. and Heip, C.H.R. (2002) Bacteria and foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Marine Ecology Progress Series 236, 2329.CrossRefGoogle Scholar
Nomaki, H., Heinz, P., Nakatsuka, T., Shimanaga, M. and Kitazato, H. (2005) Species-specific ingestion of organic carbon by deep-sea benthic foraminifera and meiobenthos: in situ tracer experiments. Limnology and Oceanography 50, 134146.CrossRefGoogle Scholar
Nomaki, H., Ogawa, N.O., Ohkouchi, N., Suga, H., Toyofuku, T., Shimanaga, M., Nakatsuka, T. and Kitazato, H. (2008) Benthic foraminifera as trophic links between phytodetritus and benthic metazoans: carbon and nitrogen isotopic evidence. Marine Ecology Progress Series 357, 153164.Google Scholar
Palmer, C.P. and Steiner, G. (1998) Class Scaphopoda: introduction. In Beesley, P.L., Ross, G.J.B. and Wells, A. (eds) Mollusca: the southern synthesis. Fauna of Australia. Melbourne: CSIRO Publishing, pp. 431438.Google Scholar
Poon, P.A. (1987) The diet and feeding behaviour of Cadulus tolmiei Dall, 1897 (Scaphopoda: Siphonodentalioida). The Nautilus 101, 8892.Google Scholar
Reynolds, P.D. (2002) The Scaphopoda. Advances in Marine Biology 42, 137236.CrossRefGoogle ScholarPubMed
Reynolds, P.D. and Steiner, G. (2008) Scaphopoda. In Ponder, W. and Lindberg, D.L. (eds) Phylogeny and evolution of the Mollusca. Berkeley, CA: University of California Press, pp. 143161.CrossRefGoogle Scholar
Rios, E. (1994) Seashells of Brazil. Rio Grande: FURG.Google Scholar
Rios, E. (2009) Compendium of Brazilian seashells. Rio Grande: Evangraf.Google Scholar
Shimek, R.L. (1988) The functional morphology of scaphopod captacula. The Veliger 30, 213221.Google Scholar
Shimek, R.L. (1990) Diet and habitat utilization in a Northeastern Pacific Ocean scaphopod assemblage. American Malacological Bulletin 7, 147169.Google Scholar
Souza, L.S., Araújo, I.C.V. and Caetano, C.H.S. (2013) A commented list of Scaphopoda (Mollusca) found along the Brazilian coast, with two new synonymies in the genus Gadila Gray, 1847. Biota Neotropica 13, 227235.Google Scholar
Steiner, G. and Kabat, A.R. (2004) Catalogue of species-group names of Recent and fossil Scaphopoda (Mollusca). Zoosystema 26, 549726.Google Scholar
Viana, A.R., Almeida, J.R.W. and Almeida, C.W. (2002) Upper slope sands: Late Quaternary shallow-water sandy contourities of Campos Basin, SW Atlantic margin. Geological Society London Memoirs 22, 261270.Google Scholar
Viana, A.R., Faugeres, J.C., Kowsmann, R.O., Lima, J.A.M., Caddah, L.F.G. and Rizzo, J.G. (1998) Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sedimentary Geology 115, 133157.CrossRefGoogle Scholar
WoRMS Editorial Board (2014) World register of marine species. Vlaams Instituut voor de Zee. Available at www.marinespecies.org (accessed September 2011 – March 2014).Google Scholar