Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T19:00:30.572Z Has data issue: false hasContentIssue false

Diet comparison between silky sharks (Carcharhinus falciformis) and scalloped hammerhead sharks (Sphyrna lewini) off the south-west coast of Mexico

Published online by Cambridge University Press:  11 April 2016

Isaac Antonio Flores-Martínez
Affiliation:
Centro de Biociencias, Universidad Autónoma de Chiapas (UNACH), Avenida Central s/n, Puerto Madero, Chiapas, C.P. 30830, México
Yassir Edén Torres-Rojas*
Affiliation:
Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México, Universidad Autónoma de Campeche (EPOMEX-UAC), Campus 6. Avenida Héroe de Nacozari #480, Campeche, Camp., C.P. 24029, México
Felipe Galván-Magaña
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. C.P. 23096, La Paz, Baja California Sur, México
Julia Ramos-Miranda
Affiliation:
Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México, Universidad Autónoma de Campeche (EPOMEX-UAC), Campus 6. Avenida Héroe de Nacozari #480, Campeche, Camp., C.P. 24029, México
*
Correspondence should be addressed to:Y.E. Torres-Rojas, Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México, Universidad Autónoma de Campeche (EPOMEX-UAC), Campus 6. Avenida Héroe de Nacozari #480, Campeche, Camp., C.P. 24029, México Email: [email protected]

Abstract

Ecologists examine diet composition in order to assess the spatial and temporal variations in interactions between species, the impact of different species traits on the ecological network structure, and the long-term effects of the removal of different species by small-scale fisheries. In this study, our goal was to compare the diets of silky sharks (Carcharhinus falciformis) and scalloped hammerhead sharks (Sphyrna lewini) off the south-west coast of Mexico in order to infer their diet preferences and spatial distributions. We sampled 164 S. lewini (96 stomachs had food, 68 were empty) and 183 C. falciformis (30 stomachs had food, 153 were empty) in Puerto Madero, Chiapas in 2011. The large number of empty stomachs may be the result of using longline fishing gear, which causes high stress resulting in regurgitation. Based on the index of relative importance (%IRI), the fish Chloroscombrus orqueta (IIR = 27.7%) was the most important species in the diet of S. lewini, while the squid Dosidicus gigas (IIR = 34%) was the primary prey of C. falciformis. Levin's index (Bi) and Shannon's index (H′) confirm that both sharks are generalists, as in other regions. The trophic levels of S. lewini (TL = 4.1) and C. falciformis (TL = 4.2) are characteristic of tertiary consumers; meanwhile, the Morisita–Horn index indicates low interspecific overlap between all categories. These results confirm that these two sharks have different foraging preferences or movement patterns; thus, there is no trophic overlap between species as they play unique roles in the ecological network off the south-west coast of Mexico.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alatorre-Ramírez, V.G., Galván-Magaña, F. and Torres-Rojas, Y.E. (2013) Trophic habitat of the Pacific sharpnose shark, Rhizoprionodon longurio, in the Mexican Pacific. Journal of the Marine Biological Association of the United Kingdom 93, 22172224.Google Scholar
Alejo-Plata, M.C., Gómez-Márquez, J.L., Ramos, S. and Herrera, E. (2007) Presencia de neonatos y juveniles del tiburón martillo Sphyrna lewini (Griffith & Smith, 1834) y del tiburón sedoso Carcharhinus falciformis (Müller & Henle, 1839) en la costa de Oaxaca, México. Revista de Biología Marina y Oceanografía 42, 403413.CrossRefGoogle Scholar
Allen, G.R. and Robertson, D.R. (1994) Fishes of the tropical eastern Pacific. Honolulu: University of Hawaii Press.Google Scholar
Bejarano-Álvarez, M., Galván-Magaña, F. and Ochoa-Báez, R.I. (2011) Reproductive biology of the scalloped hammerhead shark Sphyrna lewini (Chondrichthyes: Sphyrnidae) off southwest Mexico. Aqua International Journal of Ichthyology 17, 1122.Google Scholar
Bonfil-Sanders, S.R. (1994) Overview of world elasmobranch fisheries. FAO Fisheries Technical Paper, no. 341, 119 pp.Google Scholar
Borrell, A., Cardona, L., Kumarran, R.P. and Aguilar, A. (2011) Trophic ecology of elasmobranchs caught off Gujarat, India, as inferred from stable isotopes. ICES Journal of Marine Science 68, 547554.Google Scholar
Brusca, R.C. (1980) Common intertidal invertebrates of the Gulf of California. Tucson, AZ: University of Arizona Press.Google Scholar
Bush, A. (2002) The feeding ecology of juvenile scalloped hammerhead sharks (Sphyrna lewini) in Kaneohe Bay, Oahu, Hawaii. PhD thesis. University of Hawaii, Hawaii, USA.Google Scholar
Bush, A. (2003) Diet and diel feeding periodicity of juvenile scalloped hammerhead sharks Sphyrna lewini, in Kaneohe Bay, Oahu, Hawaii. Environmental Biology of Fishes 67, 111.Google Scholar
Cabrera-Chávez-Costa, A.A., Galván-Magaña, F. and Escobar-Sánchez, O. (2010) Food habits of the silky shark Carcharhinus falciformis (Muller & Henle, 1839) off the western coast of Baja California Sur, Mexico. Journal of Applied Ichthyology 26, 499503.Google Scholar
Castillo-Géniz, J.L. (1992) Diagnóstico de la pesquería del tiburón en México. Instituto Nacional de la Pesca, Secretaria de Pesca, México. 76 pp.Google Scholar
Chong-Robles, J. (2003) Variación temporal de la distribución de tallas del tiburón Carcharhinus falciformis, dentro de la pesca artesanal de Puerto Ángel Oaxaca, durante el periodo 2001–2002. Bachelor thesis. Universidad del Mar, Oaxaca, México.Google Scholar
Christensen, V. and Pauly, D. (1992) ECOPATH II – a software for balancing steady-state ecosystem models and calculating network characteristics. Ecology Modelling 61, 169185.Google Scholar
Clarke, M.R. (1986) A handbook for the identification of cephalopod beaks. Oxford: Clarendon Press.Google Scholar
Clothier, C.R. (1950) A key to some Southern California fishes based on vertebral characters. Fishery Bulletin 79, 183.Google Scholar
Cohen, J.E., Pimm, S.L., Yodzis, P. and Saldana, J. (1993) Body sizes of animal predators and animal prey in food webs. Journal of Animal Ecology 62, 6778.Google Scholar
Colwell, R.K. (2006) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8. Available at: www.purl.oclc.org/estimates (accessed 1 July 2014).Google Scholar
Compagno, L.J.V. (1984) Sharks of the World: an annotated and illustrated catalogue of the shark species known to date. Part 2. Carcharhiniformes. In Fischer, W. and Nauen, C.E. (tech. eds) FAO species catalogue. Volume 4, FAO Fisheries synopsis No. 125. Rome: FAO, pp. 251655.Google Scholar
Cortés, E. (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 726738.Google Scholar
Cortés, E. (1999) Standardized diet compositions and trophic levels of sharks. Journal of Marine Science 56, 707717.Google Scholar
Cousins, S.H. (1980) A trophic continuum derived from plant structure, animal size, and a detritus cascade. Journal of Theoretical Biology 82, 607618.Google Scholar
Duffy, L.M., Olson, R.J., Lennert-Cody, C.E., Galván-Magaña, F., Bocanegra-Castillo, N. and Kuhnert, P.M. (2015) Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse–seine fishery in the eastern Pacific Ocean. Marine Biology 162, 571593.CrossRefGoogle Scholar
Ferry, L.A. and Cailliet, G.M. (1996) Sample size and data analysis: are we characterizing and comparing diet properly? In MacKinlay, D. and Shearer, K. (eds) Feeding ecology and nutrition in fish: Proceedings of the Symposium on the Feeding Ecology and Nutrition in Fish, International Congress on the Biology of Fishes. San Francisco, CA: American Fisheries Society, pp. 7180.Google Scholar
Fischer, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E. and Niem, V.H. (1995) Guía FAO para la identificación de especies para los fines de la pesca. Pacifico centro-oriental. Volumen I: Plantas e invertebrados. Rome: FAO, pp. 1646.Google Scholar
Froese, R. and Pauly, D. (2003) Dynamics of overfishing. In Lozán, J.L., Rachor, E., Sundermann, J. and von Westernhagen, H. (eds). Warnsignale aus Nordsee und Wattenmeer – eine aktuelle Umweltbilanz. Hamburg: GEO, pp. 288295.Google Scholar
Galván-Magaña, F. (1988) Composición y análisis de la dieta del atún aleta amarilla Thunnus albacares en el Pacifico mexicano durante 1984–1985. Master thesis. CICIMAR-IPN, La Paz, México.Google Scholar
Galván-Magaña, F., Nienhuis, H.J. and Klimley, A.P. (1989) Seasonal abundance and feeding habits of sharks of the lower Gulf of California, Mexico. California Fish and Game 75, 7484.Google Scholar
Galván-Magaña, F., Polo-Silva, C., Hernández-Aguilar, S.B., Sandoval-Londoño, A., Ochoa-Díaz, M.R., Aguilar-Castro, N., Castañeda-Suárez, D., Cabrera-Chávez-Costa, A., Baigorrí-Santacruz, A., Torres-Rojas, Y.E. and Abitia-Cárdenas, L.A. (2013) Shark predation on cephalopods in the Mexican and Ecuadorian Pacific Ocean. Deep-Sea Research II 95, 5262.Google Scholar
Giller, P.S. (1984) Community structure and the niche. Outline studies in ecology. London: Chapman & Hall.Google Scholar
Hoyos-Padilla, E.M., Ceballos-Vázquez, B.P. and Galván-Magaña, F. (2012) Reproductive biology of the silky shark Carcharhinus falciformis (Chondrichthyes: Carcharhinidae) off the west coast of Baja California Sur, Mexico. Aqua, International Journal of Ichthyology 18, 115.Google Scholar
Kiszka, J.J., Charlot, K., Hussey, N.E., Heithaus, M.R., Simon-Bouhet, B., Humber, F., Caurant, F. and Bustamante, P. (2014) Trophic ecology of common elasmobranchs exploited by artisanal shark fisheries off south-western Madagascar. Aquatic Biology 23, 2938.Google Scholar
Klimley, A.P. (1983) Social organization of schools of the scalloped hammerhead, Sphyrna lewini (Griffith & Smith), in the Gulf of California. PhD thesis, University of California, San Diego, CA.Google Scholar
Klimley, A.P. (1987) The determinants of sexual segregation in the scalloped hammerhead shark Sphyrna lewini . Environmental Biology of Fishes 18, 2740.Google Scholar
Klimley, A.P., Butler, S.B., Nelson, D.R. and Stull, T. (1988) Diel movements of scalloped hammerhead sharks, Sphyrna lewini to and from a seamount in the Gulf of California. Journal of Fish Biology 33, 751761.Google Scholar
Krebs, C.J. (1999) Ecological methodology. 2nd edition. Menlo Park, CA: Addison Wesley Longman.Google Scholar
Kulbicki, M., Bozec, Y.M., Labrosse, P., Letourneur, Y., Mou-Tham, G. and Wantiez, L. (2005) Diet composition of carnivorous fishes from coral reef lagoons of New Caledonia. Aquatic Living Resources 18, 231250.Google Scholar
Labropoulou, M. and Eleftheriou, A. (1997) The foraging ecology of two pairs of congeneric demersal fish species: importance of morphological characteristics in prey selection. Journal of Fish Biology 50, 324340.CrossRefGoogle Scholar
Langton, R.W. (1982) Diet overlap between the Atlantic cod Gadus morhua, silver hake Merluccius bilinearis and fifteen other northwest Atlantic finfish. U.S. National Marine Fisheries Service Fishery Bulletin 80, 745759.Google Scholar
Lowe, C.G., Wetherbee, B.M., Crow, G.L. and Tester, A.L. (1996) Ontogenetic dietary shifts and feeding behaviour of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Environmental Biology of Fishes 47, 203211.Google Scholar
Marín, O.R. (1992) Biological aspects of sharks caught in the coasts of Tamaulipas and Veracruz, Mexico. Bachelor thesis. Universidad Veracruzana, Veracruz, Mexico.Google Scholar
Ovchivnnikov, V.V. (1970) Swordfishes and billfishes in the Atlantic Ocean: ecology and functional morphology. Israel Program for Scientific Translations, 77 pp.Google Scholar
Pauly, D. (1998) Tropical fishes: patterns and propensities. Journal of Fish Biology 53, 117.Google Scholar
Pauly, D., Christensen, V., Dalsgaard, J. and Froese, R. (1998) Fishing down marine food webs. Science 279, 860863.CrossRefGoogle ScholarPubMed
Pianka, E.R. (1974) Niche overlap and diffuse competition. Proceedings of the National Academy of Sciences USA 71, 21412145.Google Scholar
Pianka, E.R. (1978) Evolutionary ecology. 2nd edition. New York, NY: Harper and Row Press.Google Scholar
Pielou, E.C. (1975) Ecological diversity. New York, NY: John Wiley and Sons.Google Scholar
Pinkas, L., Oliphant, M.S. and Iverson, L.K. (1971) Food habits of albacore, bluefin tuna and bonito in California waters. Fishery Bulletin 152, 1105.Google Scholar
Potier, M., Marsac, F., Cherel, Y., Lucas, V., Sabatié, R., Maury, O. and Ménard, F. (2007) Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fisheries Research 83, 6072.CrossRefGoogle Scholar
Ronquillo, K. (1999) Aspectos biológicos y pesqueros del tiburón aleta de cartón Carcharhinus falciformis (Bibron, 1839) de las aguas del Golfo de Tehuantepec, Chiapas, México. Bachelor thesis. UNAM, México.Google Scholar
Smith, E.P. and Zaret, T.M. (1982) Bias in estimating niche overlap. Ecology 63, 12481253.Google Scholar
Steel, R.G.D. and Torrie, J.H. (1992) Bioestadistica. Principios y procedimientos. México: Editorial Graf América.Google Scholar
Stillwell, C.E. and Kohler, N.E. (1982) Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the northern Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 39, 407414.Google Scholar
Suriano-Velázquez, S.R., Acal-Sánchez, D., Castillo-Geniz, J.L., Vázquez-Gómez, N. and Ramírez-Santiago, C.E. (2006) Sustentabilidad y pesca responsable en México. SAGARPA. Instituto Nacional de la Pesca, 326 pp.Google Scholar
Sutherland, W.J., Freckleton, R.P., Godfray, H.C.J., Beissinger, S.R., Benton, T., Cameron, D.D., Carmel, Y., Coomes, D.A., Coulson, T., Emmerson, M.C., Hails, R.S., Hays, G.C., Hodgson, D.J., Hutchings, M.J., Johnson, D., Jones, J.P.G., Keeling, M.J., Kokko, H., Kunin, W.E., Lambin, X., Lewis, O.T., Malhi, Y., Mieszkowska, N., Milner-Gulland, E.J., Norris, K., Phillimore, A.B., Purves, D.W., Reid, J.M., Reuman, D.C., Thompson, K., Travis, J.M.J., Turnbull, L.A., Wardle, D.A. and Wiegand, T. (2013) Identification of 100 fundamental ecological questions. Journal of Ecology 101, 5867.Google Scholar
Torres-Huerta, A.M. (2004) Distribución, abundancia y hábitos alimentarios de juveniles del tiburón martillo Sphyrna lewini Griffth y Smith (SPHYRNIDAE) en la costa de Sinaloa, México durante el evento El Niño 1997–98. Master thesis. UMAR, Oaxaca, Mexico.Google Scholar
Torres-Rojas, Y.E., Hernández-Herrera, A. and Galván-Magaña, F. (2006) Feeding habits of the scalloped hammerhead Sphyrna lewini, in Mazatlán waters, southern Gulf of California, Mexico. Cybium 30, 8590.Google Scholar
Torres-Rojas, Y.E., Hernández-Herrera, A., Galván-Magaña, F. and Alatorre-Ramírez, V.G. (2009) Stomach content analysis of juvenile scalloped hammerhead shark Sphyrna lewini captured off the coast of Mazatlán, Mexico. Aquatic Ecology 44, 301308.CrossRefGoogle Scholar
Torres-Rojas, Y.E., Páez-Osuna, F., Hernández-Herrera, A., Galván-Magaña, F., Aguiñiga-García, S., Villalobos-Ortiz, H. and Sampson, L. (2013) Feeding grounds of juvenile scalloped hammerhead sharks (Sphyrna lewini) in the south-eastern Gulf of California. Hydrobiologia 726, 8194.Google Scholar
Tytler, P. and Calow, P. (1985) Fish energetics: new perspectives. Sydney: Croom Helm Press.Google Scholar
Warren, P.H. and Lawton, J.H. (1987) Invertebrate predator–prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia 74, 231235.Google Scholar
Whittaker, R.H. (1972) Evolution and measurement of species diversity. Taxon 21, 213251.Google Scholar
Wolff, C.A. (1984) Identification and estimation of size from the beaks of eighteen species of cephalopods from the Pacific Ocean. NOAA Tech Report, NMFS 17, pp. 150.Google Scholar
Yunkai, L.I., Gong, Y., Chen, X., Dai, X. and Zhu, J. (2014) Trophic ecology of sharks in the mid-east Pacific Ocean inferred from stable isotopes. Journal of Ocean University of China (Oceanic and Coastal Sea Research) 13, 278282.Google Scholar