Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T17:33:10.644Z Has data issue: false hasContentIssue false

Crustacean assemblages along the Guadiana River estuary (south-westernIberian Peninsula)

Published online by Cambridge University Press:  02 November 2010

J. Emilio Sánchez-Moyano*
Affiliation:
Departamento Fisiología y Zoología, Facultad de Biología, Universidad Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
Isabel García-Asencio
Affiliation:
Departamento Fisiología y Zoología, Facultad de Biología, Universidad Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
*
Correspondence should be addressed to: J.E.Sánchez-Moyano, Departamento Fisiología y Zoología, Facultadde Biología, Universidad Sevilla,Avenida Reina Mercedes 6, 41012 Sevilla, Spainemail: [email protected]

Abstract

The spatial distribution of the subtidal crustacean assemblages of the Guadiana Riverestuary was studied previous to the building of the Alqueva Dam (the biggest dam inEurope). The differences between an estuarine and marine environment seem to be the mainreason responsible for the composition and distribution of the crustaceans along the studyzone. The Guadiana estuary has shown high number of species in comparison with othernearby estuaries and this richness seems justified by the scarce influence of pollutants(most of them have shown low or moderate values) and their hydrodynamic and granulometriccharacteristics (76 species were found, 39 in the estuarine area). A gradient ofenrichment and structuring of the assemblages was shown from the upstream to the marinezones and a spatial segregation of species was found along this estuarine environmentalgradient, e.g. the amphipod Corophium multisetosum and the isopodCyathura carinata in the upper estuary; the amphipodBathyporeia cf. pilosa and the isopodsLekanesphera levii and Saduriella losadoi in themiddle estuary; the amphipod Melita hergensis in the mouth; and a highnumber of species in the marine area. Since the Alqueva Dam will reduce the riverdischarges and may cause changes in the abiotic characteristics such as granulometry ofsediments or salinity, this study establishes a baseline against which a monitoringprogramme or follow-up studies could measure any significant effects of the dam or relatedimpacts.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attrill, M.J. and Rundle, S.D. (2002) Ecotone or ecocline: ecological boundaries in estuaries. Estuarine, Coastal and Shelf Science 55, 929936.CrossRefGoogle Scholar
Baldó, F., Megina, C. and Cuesta, J.A. (2000) Saduriella losadai Holthuis, 1964 (Isopoda, Valvifera) in the Guadalquivir estuary (SW Spain). Crustaceana 73, 10151017.CrossRefGoogle Scholar
Buchanan, J.D. and Kein, J.M. (1984) Measurement of the physical and chemical environment. In Holme, N.L. and McIntyre, A.D. (eds) Methods for the study of marine benthos. Oxford: Blackwell Scientific Publications, pp. 3050.Google Scholar
Bunn, S.E. and Arthington, A.H. (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30, 492507.CrossRefGoogle ScholarPubMed
Caetano, M., Vale, C. and Falcao, M. (2006) Particulate metal distribution in Guadiana estuary punctuated by flood episodes. Estuarine, Coastal and Shelf Science 70, 109116.CrossRefGoogle Scholar
Chícharo, M.A., Chícharo, L. and Morais, P. (2006a) Inter-annual differences of ichthyofauna structure of the Guadiana estuary and adjacent coastal area (SE Portugal/SW Spain): before and after Alqueva dam construction. Estuarine, Coastal and Shelf Science 70, 3951.CrossRefGoogle Scholar
Chícharo, L., Chícharo, M.A. and Ben-Hamadou, R. (2006b) Use of a hydrotechnical infrastructure (Alqueva Dam) to regulate planktonic assemblages in the Guadiana estuary: basis for sustainable water and ecosystem services management. Estuarine, Coastal and Shelf Science 70, 318.CrossRefGoogle Scholar
Clarke, K.R. (1993) Non parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Clarke, K.R. and Ainsworth, M. (1993) A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92, 205219.CrossRefGoogle Scholar
Consejería de Medio Ambiente (1997) Modelo de Gestión del Estuario del río Guadiana. Sevilla: Junta de Andalucía.Google Scholar
Cravo, A., Madureira, M., Felícia, H., Rita, F. and Bebianno, M.J. (2006) Impact of outflow from the Guadiana River on the distribution of suspended particulate matter and nutrients in the adjacent coastal zone. Estuarine, Coastal and Shelf Science 70, 6375.CrossRefGoogle Scholar
Cruz, S., Marques, J.C., Gamito, S. and Martins, I. (2003) Autecology of the isopod, Cyathura carinata (Krøyer, 1847) in the Ria Formosa (Algarve, Portugal). Crustaceana 76, 781802.Google Scholar
Cunha, M.R., Sorbe, J.C. and Moreira, M.H. (1999) Spatial and seasonal changes of brackish peracaridean assemblages and their relation to some environmental variables in two tidal channels of Ria de Aveiro (NW Portugal). Marine Ecology Progress Series 190, 6987.CrossRefGoogle Scholar
Dauvin, J.C., Desroy, N., Janson, A.L., Vallet, C. and Duhamel, S. (2006) Recent changes in estuarine benthic and suprabenthic communities resulting from the development of harbour infrastructure. Marine Pollution Bulletin 53, 8090.CrossRefGoogle ScholarPubMed
Desrosiers, G., Bellan-Santini, D., Brethes, J.C. and Willsie, A. (1990) Variability in trophic dominance of crustaceans along a gradient of urban and industrial contamination. Marine Biology 105, 137143.CrossRefGoogle Scholar
Domingues, R.B., Barbosa, A. and Galvão, H. (2005) Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuarine, Coastal and Shelf Science 64, 249260.CrossRefGoogle Scholar
Drake, P., Arias, A.M., Baldo, F., Cuesta, J.A., Rodríguez, A., Silva-Garcia, A., Sobrino, I., Garcia-Gonzalez, D. and Fernandez, C. (2002) Spatial and temporal variation of the nekton and hyperbenthos from a temperate European estuary with regulated freshwater inflow. Estuaries 25, 451468.CrossRefGoogle Scholar
Gaston, G.R., Rakocinski, C.F., Brown, S.S. and Cleveland, C.M. (1998) Trophic function in estuaries: response of macrobenthos to natural and contaminant gradients. Marine Freshwater Research 49, 833846.CrossRefGoogle Scholar
Gonzalez, R., Araújo, M.F., Burdloff, D., Cachão, M., Cascalho, J. and Corredeira, C. (2007) Sediment and pollutant transport in the Northern Gulf of Cadiz: a multi-proxy approach. Journal of Marine Systems 68, 123.CrossRefGoogle Scholar
Guerra-Garcia, J.M. and García-Gómez, J.C. (2004) Crustacean assemblages and sediment pollution in an exceptional case study: a harbour with two opposing entrances. Crustaceana 77, 353370.CrossRefGoogle Scholar
Herman, P.M.J., Middelburg, J.J., van de Koppel, J. and Heip, C.H.R. (1999) Ecology of estuarine macrobenthos. Advance in Ecology Research 29, 195240.CrossRefGoogle Scholar
Holthuis, L.B. (1964) Saduriella, a new genus of Isopoda Valvifera from north-western Spain. Zoologische Mededelingen 40, 2935.Google Scholar
Karaman, G.S. (1982) Family Gammaridae. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Mónaco: Mémoires de L'Institut Océanographique No. 13, pp. 245364.Google Scholar
López-Serrano, L. (1999) Estudio de la macrofauna bentónica de la desembocadura del río Piedras (Huelva). PhD thesis. Complutense University of Madrid, Spain.Google Scholar
Lourido, A., Moreira, J. and Troncoso, J.S. (2008) Assemblages of peracarid crustaceans in subtidal sediments from the Ría de Aldán (Galicia, NW Spain). Helgoland Marine Research 62, 289301.CrossRefGoogle Scholar
Marques, J.C., Maranhao, P. and Pardal, M.A. (1993) Human impact assessment on the subtidal macrobenthic community structure in the Mondego Estuary (Western Portugal). Estuarine, Coastal and Shelf Science 37, 403419.CrossRefGoogle Scholar
Morais, P., Chícharo, M.A. and Chícharo, L. (2009) Changes in a temperate estuary during the filling of the biggest European dam. Science of the Total Environment 407, 22452259.CrossRefGoogle Scholar
Morrisey, D.J., Turner, S.J., Mills, G.N., Williamson, R.B. and Wise, B.E. (2003) Factors affecting the distribution of benthic macrofauna in estuaries contaminated by urban runoff. Marine Environmental Research 55, 113136.CrossRefGoogle ScholarPubMed
Mucha, A.P., Vasconcelos, M.T.S.D. and Bordalo, A.A. (2003) Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environmental Pollution 121, 169180.CrossRefGoogle ScholarPubMed
Myers, A.A. (1982) Family Corophiidae. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Mónaco: Mémoires de L'Institut Océanographique No. 13, pp. 185208.Google Scholar
Rakocinski, C.F., Brown, S.S., Gaston, G.R., Heard, R.W., Walker, W.W. and Summers, J.K. (1997) Macrobenthic responses to natural and contaminant-related gradients in Northern Gulf of Mexico estuaries. Ecological Applications 7, 12781298.CrossRefGoogle Scholar
Ruiz, F. (2001) Trace metals in estuarine sediments from the South-western Spanish Coast. Marine Pollution Bulletin 42, 482490.CrossRefGoogle Scholar
Sainz, A. and Ruiz, F. (2006) Influence of the very polluted inputs of the Tinto–Odiel system on the adjacent littoral sediments of south-western Spain: a statistical approach. Chemosphere 62, 16121622.CrossRefGoogle Scholar
Sánchez-Moyano, J.E. and García-Gómez, J.C. (1998) The arthropod community, especially Crustacea, as a bioindicator in Algeciras Bay (Southern Spain) based on a spatial distribution. Journal of Coastal Research 14, 11191133.Google Scholar
Sánchez-Moyano, J.E., García-Adiego, E.M., García-Asencio, I. and García-Gómez, J.C. (2003) Influencia del gradiente ambiental sobre la distribución de las comunidades macrobentónicas del estuario del río Guadiana. Boletín del Instituto Español de Oceanografía 19, 123133.Google Scholar
Sánchez Moyano, J.E., García Asencio, I., García Adiego, E., García Gómez, J.C., Leal Gallardo, A., Ollero de Castro, C. and Fraidías, J. (2005) Caracterización ambiental de los fondos del estuario del río Guadiana. Sevilla: Consejería de Medio Ambiente, Junta de Andalucía.Google Scholar
Savage, C., Elmgren, R. and Larsson, U. (2002) Effects of sewage-derived nutrients on an estuarine macrobenthic community. Marine Ecology Progress Series 243, 6782.CrossRefGoogle Scholar
Sklar, F.H. and Browder, J.A. (1998) Coastal environmental impacts brought about by alterations to freshwater flow in the Gulf of Mexico. Environmental Management 22, 547562.CrossRefGoogle ScholarPubMed
Sousa, R., Dias, S. and Antunes, J.C. (2006) Spatial subtidal macrobenthic distribution in relation to abiotic conditions in the Lima estuary, NW of Portugal. Hydrobiologia 559, 135148.CrossRefGoogle Scholar
Sousa, R., Dias, S., Freitas, V. and Antunes, C. (2008) Subtidal macrozoobenthic assemblages along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquatic Conservation: Marine and Freshwater Ecosystems 18, 10631077.CrossRefGoogle Scholar
Ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671179.CrossRefGoogle Scholar
Ter Braak, C.J.F. (1990) Interpreting canonical correlation analysis through biplots of structure correlations and weights. Psychometrika 55, 519531.CrossRefGoogle Scholar
Valiela, I. (1995) Marine ecological processes. 2nd edition.New York: Springer.CrossRefGoogle Scholar
Vasconcelos, R.P., Reis-Santos, P., Fonseca, V., Maia, A., Ruano, M., França, S., Vinagre, C., Costa, M.J. and Cabral, H.N. (2007) Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: a multi-metric index and conceptual approach. Science of the Total Environmental 374, 199215.CrossRefGoogle Scholar
Warwick, R.M. (1988) The level of taxonomic discrimination required to detect pollution effects on marine benthic communities. Marine Pollution Bulletin 19, 259268.CrossRefGoogle Scholar
Warwick, R.M., Goss-Custard, J.D., Kirby, R., George, C.L., Pope, N.D. and Rowden, A.A. (1991) Static and dynamic environmental factors determining the community structure of estuarine macrobenthos in SW Britain: why is the Severn estuary different? Journal of Applied Ecology 28, 329345.CrossRefGoogle Scholar
Weisberg, S.B., Ranasinghe, J.A., Dauer, D.M., Schaffner, L.C., Diaz, R.J. and Frithsen, J.B. (1997) An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay. Estuaries 20, 146158.CrossRefGoogle Scholar
Wolanski, E., Chícharo, L., Chícharo, M. and Morais, P. (2006) An ecohydrology model of the Guadiana Estuary (South Portugal). Estuarine, Coastal and Shelf Science 70, 8597.CrossRefGoogle Scholar
Wolf, W.J. (1983) Estuarine benthos. In Ketchum, B.H. (ed.) Estuaries and enclosed areas. Amsterdam: Elsevier, pp. 151182.Google Scholar
Ysebaert, T. and Herman, P.M.J. (2002) Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment environment. Marine Ecology Progress Series 244, 105124.CrossRefGoogle Scholar
Ysebaert, T., Meire, P., Herman, P.M.J. and Verbeek, H. (2002) Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Marine Ecology Progress Series 225, 7995.CrossRefGoogle Scholar
Ysebaert, T., Herman, P.M.J., Meire, P., Craeymeersch, J., Verbeek, H. and Heip, C.H.R. (2003) Large-scale spatial patterns in estuaries: estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuarine, Coastal and Shelf Science 57, 335355.CrossRefGoogle Scholar