Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T16:17:49.543Z Has data issue: false hasContentIssue false

Copepod assemblages as a bioindicator of environmental quality in three coastal areas under contrasted anthropogenic inputs (Gulf of Gabes, Tunisia)

Published online by Cambridge University Press:  11 September 2017

Zaher Drira*
Affiliation:
Department of Life Sciences, Sfax Faculty of Sciences, Biodiversity and Aquatic Ecosystems UR/11ES72 Research Unit, University of Sfax, Soukra Road Km 3.5. BP 1171 – PO Box 3000 Sfax, Tunisia
Salma Kmiha-Megdiche
Affiliation:
Department of Life Sciences, Sfax Faculty of Sciences, Biodiversity and Aquatic Ecosystems UR/11ES72 Research Unit, University of Sfax, Soukra Road Km 3.5. BP 1171 – PO Box 3000 Sfax, Tunisia
Houda Sahnoun
Affiliation:
Coastal and Urban Environment Unit, IPEIS, P.C. ‘3000’ Sfax, Tunisia
Marc Tedetti
Affiliation:
Aix Marseille University, CNRS/INSU, University of Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
Marc Pagano
Affiliation:
Aix Marseille University, CNRS/INSU, University of Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
Habib Ayadi
Affiliation:
Department of Life Sciences, Sfax Faculty of Sciences, Biodiversity and Aquatic Ecosystems UR/11ES72 Research Unit, University of Sfax, Soukra Road Km 3.5. BP 1171 – PO Box 3000 Sfax, Tunisia
*
Correspondence should be addressed to: Z. Drira Department of Life Sciences, Sfax Faculty of Sciences, Biodiversity and Aquatic Ecosystems UR/11ES72 Research Unit, University of Sfax, Soukra Road Km 3.5. BP 1171 – PO Box 3000 Sfax, Tunisia email: [email protected]

Abstract

The study of copepod assemblages indicated the presence of 22 species and 12 families in the southern coast of Sfax, 20 species and 13 families in the northern coast and 14 species and 8 families in the Ghannouch area, with a dominance of Oithonidae (79, 51 and 43% in the southern, northern and Ghannouch coasts, respectively). The relative abundance and the richness diversity of Oithonidae were found to be the most relevant indicators of anthropogenic pollution. Oithona nana, Euterpina acutifrons and Acartia clausi differed significantly in abundance between these three areas under differing degrees of pollution. The study of the structure, composition and density of the copepod fauna showed that the southern coast was a pollution-resistant ecosystem (H′ = 1.49 ± 0.33 bits ind−1; 22 species; density = 51.375 ± 4.340 × 103 ind m−3) followed by Ghannouch area (H′ = 1.74 ± 0.28 bits ind−1; 15 species; density = 11.979 ± 5.651 × 103 ind m−3) and the northern coast, considered as a restored area (H′ = 1.95 ± 0.26 bits ind−1; 21 species; density = 6.516 ± 4.304 × 103 ind m−3). The three ecosystems can thus be classified according to their degree of resistance to the anthropogenic inputs based on the results of the physico-chemical parameters and the species diversity as follows: southern coast > Ghannouch area > northern coast.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aloulou, F., Elleuch, B. and Kallel, M. (2012) Benthic foraminiferal assemblages as pollution proxies in the northern coast of Gabes Gulf, Tunisia. Environmental Monitoring and Assessment 184, 777795.Google Scholar
Annabi-Trabelsi, N., Daly-Yahia, M.N., Romdhane, M.S. and Ben-Maïz, N. (2005) Seasonal variability of planktonic copepods in Tunis north lagoon (Tunisia, North Africa). Cahiers de Biologie Marine 46, 325333.Google Scholar
APHA (1992) American public health association standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.Google Scholar
Baccar, A. (2014) Contribution à l’étude écologique du zooplancton de la côte du golfe de Gabès. Mastère. Université de Gabès Faculté des sciences de Gabès Tunisie.Google Scholar
Bagheri, S., Sabkara, J., Mirzajani, A., Khodaparast, S.H., Yosefzad, E. and Yeok, F.S. (2013) List of zooplankton taxa in the Caspian sea waters of Iran. Journal of Marine Biology 2013, 17.Google Scholar
Bahloul, M., Chabbi, I., Dammak, R., Amdouni, R., Medhioub, K. and Azri, C. (2015) Geochemical behaviour of PM10 aerosol constituents under the influence of succeeding anticyclonic/cyclonic situations: case of Sfax City, southern Tunisia. Environmental Monitoring and Assessment 187, 757.Google Scholar
Bahri-Trabelsi, E.L., Armi, Z., Trabelsi-Annabi, N., Shili, A. and Ben Maiz, N. (2013) Water quality variables as indicators in the restoration impact assessment of the north lagoon of Tunis, South Mediterranean. Journal of Sea Research 79, 1219.Google Scholar
Barhoumi, S., Messaoudi, I., Deli, T., Saïd, K. and Kerkeni, A. (2009) Cadmium bioaccumulation in three benthic fish species, Salaria basilisca, Zosterisessor ophiocephalus and Solea vulgaris collected from the Gulf of Gabes in Tunisia. Journal of Environmental Sciences 21, 980984.Google Scholar
Beaugrand, G., Edwards, M. and Legendre, L. (2010) Marine biodiversity, ecosystem functioning, and carbon cycles. Proceedings of the National Academy of Sciences USA 107, 1012010124.Google Scholar
Bejaoui, B., Raïs, S. and Koutitonsky, V. (2004) Modelisation de la dispersion du phosphogypse dans le Golfe de Gabes. Bulletin de l'Institut National des Sciences et Technologie de la Mer Salammbô 31, 103109.Google Scholar
Ben Brahim, M., Hamza, A., Hannachi, I., Rebai, A., Jarboui, O., Bouain, A. and Aleya, L. (2010) Variability in the structure of epiphytic assemblages of Posidonia oceanica in relation to human interferences in the Gulf of Gabes, Tunisia. Marine Environmental Research 70, 411421.Google Scholar
Ben Ltaief, T., Drira, Z., Devenon, J.L., Hamza, A., Ayadia, H. and Pagano, M. (2017) How could thermal stratification affect horizontal distribution of depth-integrated metazooplankton communities in the Gulf of Gabes (Tunisia)? Marine Biology Research. 13, 269287.Google Scholar
Ben Ltaief, T., Drira, Z., Hannachi, I., Bel Hassen, M., Hamza, A., Pagano, M. and Ayadi, H. (2015) What are the factors leading to the success of small planktonic copepods in the Gulf of Gabes, Tunisia? Journal of the Marine Biological Association of the United Kingdom 95, 747761.Google Scholar
Ben Salem, Z. and Ayadi, H. (2016) Heavy metal accumulation in Diplodus annularis, Liza aurata, and Solea vulgaris relevant to their concentration in water and sediment from the southwestern Mediterranean (coast of Sfax). Environmental Science and Pollution Research 23, 1389513906.Google Scholar
Ben Salem, Z., Drira, Z. and Ayadi, H. (2015) What factors drive the variations of phytoplankton, ciliate and mesozooplankton communities in the polluted southern coast of Sfax, Tunisia? Environmental Science and Pollution Research 22, 1176411780.Google Scholar
Bouchouicha-Smida, D., Sahraoui, I., Mabrouk, H.H. and Sakka Hlaili, A. (2012) Seasonal dynamics of genus Alexandrium (potentially toxic dinoflagellate) in the lagoon of Bizerte (North of Tunisia) and controls by the abiotic factors. Comptes Rendus Biologies 335, 406416.Google Scholar
Bradford-Grieve, J.M. (1999) Copepoda. Sub-order: Calanoida, family: Acartiidae, genera: Acartia, Paracartia, Pteriacartia. Copenhagen: ICES Identification Leaflets for Plankton.Google Scholar
Brander, K. (2010) Impacts of climate change on fisheries. Journal of Marine System 79, 389402.Google Scholar
Burrows, M.T., Schoeman, D.S., Buckley, L.B., Moore, P., Poloczanska, E.S., Brander, K.M., Brown, C., Bruno, J.F., Duarte, C.M., Halpern, B.S., Holding, J., Kappel, C.V., Kiessling, W., O'Connor, M.I., Pandolfi, J.M., Parmesan, C., Schwing, F.B., Sydeman, W.J. and Richardson, A.J. (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652655.Google Scholar
Callaert, B., Van Den Bogaert, J., Pieters, A., Pynaert, K., Tison, P., Levrau, K., Vander Heyde, D. and Glaser, D. (2009) Taparura project: sustainable coastal development, including the decontamination and rehabilitation of the coastal area of the city of Sfax, Tunisia. Coastal and Maritime Mediterranean Conference 1, 175178.Google Scholar
Carr, M.H., Neigel, J.E., Estes, J.A., Andelman, S., Warner, R.R. and Largier, J.L. (2003) Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves. Ecological Applications 13, 90107.Google Scholar
Castel, J. and Feurtet, A. (1992) Fecundity and mortality rates of the copepod Eurytemora affinis hirundoides in a turbid estuary. Marine Biology 107, 119128.Google Scholar
Cloern, J.E. (2001) Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210, 223253.Google Scholar
Costanzo, G., Campolmi, M. and Zagani, G. (2007) Stephos marsalensis new species (Copepoda, Calanoida, Stephidae) from coastal waters of Sicily, Italy. Journal of Plankton Research 22, 20072014.Google Scholar
Daly-Yahia, M.N., Souissi, O.S. and Daly-Yahia Kéfi, O. (2004) Spatial and temporal structure of planktonic copepods in the Bay of Tunis (Southwestern Mediterranean Sea). Zoological Studies 43, 366375.Google Scholar
Danilov, R.A. and Ekelund, N.G.A. (1999) The efficiency of seven diversity and one similarity indices based on phytoplankton data for assessing the level of eutrophication in lakes in central Sweden. Science of the Total Environment 234, 1523.Google Scholar
Delia Vinas, M., Diovisalvi, N.R. and Cepeda, G.D. (2010) Individual biovolume of some dominant copepod species in coastal waters off Buenos Aires province, Argentine Sea. Brazilian Journal of Oceanography 58, 177181.Google Scholar
De-Young, B., Heath, M., Werner, F., Megrey, B. and Monfray, P. (2004) Challenges of modeling ocean basin ecosystems. Science 304, 14631466.Google Scholar
DGPA (2004) Annuaires des statistiques des produits de la pêche. Tunisie: Ministère de l'Agriculture.Google Scholar
Drira, Z., Bel Hassen, M., Ayadi, H. and Aleya, L. (2014) What factors drive copepod community dynamics in the Gulf of Gabes, Eastern Mediterranean Sea? Environmental Science and Pollution Research 21, 29182934.Google Scholar
Drira, Z., Bel Hassen, M., Ayadi, H., Hamza, A., Zarrad, R., Bouaïn, A. and Aleya, L. (2010a) Copepod community structure related to environmental factors from a summer cruise in the Gulf of Gabes (Tunisia, eastern Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 90, 145157.Google Scholar
Drira, Z., Bel Hassen, M., Hamza, A., Rebai, A., Bouain, A., Ayadi, H. and Aleya, L. (2009) Spatial and temporal variations of microphytoplankton composition related to hydrographic conditions in the Gulf of Gabes. Journal of the Marine Biological Association of the United Kingdom 89, 15591569.Google Scholar
Drira, Z., Hamza, A., Bel Hassen, M., Ayadi, H., Bouaïn, A. and Aleya, L. (2008) Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea). Scientia Marina 72, 5971.Google Scholar
Drira, Z., Hamza, A., Bel Hassen, M., Ayadi, H., Bouaïn, A. and Aleya, L. (2010b) Coupling of phytoplankton community structure to nutrients, ciliates and copepods in the Gulf of Gabes (south Ionian Sea, Tunisia). Journal of the Marine Biological Association of the United Kingdom 90, 12031215.Google Scholar
Drira, Z., Kmiha-Megdiche, S., Sahnoun, H., Hammami, A., Allouche, N., Tedetti, M. and Ayadi, H. (2016) Assessment of anthropogenic inputs in the surface waters of the southern coastal area of Sfax during Spring (Tunisia, Southern Mediterranean Sea). Marine Pollution Bulletin 104, 355363.Google Scholar
Drira, Z., Sahnoun, H. and Ayadi, H. (2017) Spatial distribution and source identification of heavy metals in surface waters of three coastal areas (Gulf of Gabes, Tunisia). Polish Journal of Environmental Studies 26, 113.Google Scholar
Dufrene, M. and Legendre, P. (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345366.Google Scholar
Feki, W., Hamza, A., Frossard, V., Abdennadher, M., Hannachi, I., Jacquot, M., Bel Hassen, M. and Aleya, L. (2013) What are the potential drivers of blooms of the toxic dinoflagellate Karenia selliformis? A 10-year study in the Gulf of Gabes, Tunisia, southwestern Mediterranean Sea. Harmful Algae 23, 818.Google Scholar
Furnestin, M.L. (1960) Zooplancton du Golfe du Lion et de la côte orientale de Corse. Revue des Travaux de l'Institut des Pêches Maritimes 24, 153252.Google Scholar
Gallienne, C.P. and Robins, D.B. (2001) Is Oithona the most important copepod in the world's oceans? Journal of Plankton Research 23, 14211432.Google Scholar
Gargouri, D., Azri, C., Serbaji, M.M., Jedoui, Y. and Montacer, M. (2011) Heavy metal concentrations in the surface marine sediments of Sfax Coast, Tunisia. Environmental Monitoring and Assessment 175, 519530.Google Scholar
Gargouri, D., Bahloul, M. and Chafai, A. (2015) Sediment quality and potential toxicity assessment in two open/semi-closed Mediterranean sea areas: a case study of Sfax coast (Tunisia). Water Environment Research 87, 470479.Google Scholar
Gargouri, T. (2006) Diagnostique de la zone côtière Sud de Grand Sfax, Projet SMAP III- Tunisie (2006–2008). Tunisie: Stratégie de Gestion Intégré de la zone Côtière Sud de Grand Sfax.Google Scholar
Gargouri-Ben Ayed, Z., Souissi, R., Soussi, M., Abdeljaouad, S. and Zouari, K. (2007) Sedimentary dynamics and ecological state of Nakta Tidal Flat (Littoral), South of Sfax, Gulf of Gabes, Tunisia. Chinese Journal of Geochemistry 26, 244251.Google Scholar
Gordina, A.D., Pavlova, E.V., Ovsyany, E.I., Wilson, J.G., Kemp, R.B. and Romanov, A.S. (2001) Long-term changes in Sevastopol Bay (the Black Sea) with particular reference the ichthyoplankton and zooplankton. Estuarine, Coastal and Shelf Science 52, 113.Google Scholar
Goswani, S.C. (1976) Larval stages of laboratory reared harpacticoid copepod Euterpina acutifrons (Dana). National Institute of Oceanography 8, 123132.Google Scholar
Hamza-Chaffai, A., Amiard-Triquet, C. and El Abed, A. (1997) Metallothionein-like protein, is it an efficient biomarker of metal contamination? A case study based on fish from the Tunisian coast. Archives of Environmental Contamination and Toxicology 33, 5362.Google Scholar
Hamza-Chaffai, A., Cosson, R.P., Amiard-Triquet, C. and El Abed, A. (1995) Physico-chemical forms of storage of metals (Cd, Cu and Zn) and metallothionein-like proteins in gills and liver of marine fish from the Tunisian coast: ecotoxicological consequences. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 111, 329341.Google Scholar
Hamza-Chaffai, A., Pellerin, J. and Amiard, J.C. (2003) Health assessment of a marine bivalve Ruditapes decussatus from the Gulf of Gabes (Tunisia). Environment International 28, 609617.Google Scholar
Hays, G.C., Richardson, A.J. and Robinson, C. (2005) Climate change and marine plankton. Trends in Ecology and Evolution 20, 337344.Google Scholar
Hemraj, D.A., Hossain, M.A., Ye, Q., Qin, J.G. and Leterme, S.C. (2017) Plankton bioindicators of environmental conditions in coastal lagoons. Estuarine, Coastal and Shelf Science 184, 102114.Google Scholar
Isinibilir, M., Kideys, A.E., Tarkan, A.N. and Yilmaz, I.N. (2008) Annual cycle of zooplankton abundance and species composition in Izmit Bay (the northeastern Marmara Sea). Estuarine, Coastal and Shelf Science 78, 739747.Google Scholar
Jamet, J., Boge, G., Richard, S., Geneys, C. and Jamet, D. (2001) The zooplankton community in bays of Toulon area (northwest Mediterranean Sea, France). Hydrobiologia 457, 155165.Google Scholar
Kennedy, V.S., Twilley, R.R., Kleypas, J.A., Cowan, J.H.J. and Hare, S.R. (2002) Coastal and marine ecosystems and global climate change: potential effects on U.S. Arlington, VA: Resources, Pew Center on Global Climate Change.Google Scholar
Kiorboe, T. (2006) Sex, sex-ratios and the dynamics of pelagic copepod populations. Oecologia 148, 4050.Google Scholar
Lampitt, R.S. and Gamble, J.C. (1982) Diet and respiration of the small planktonic marine copepod Oithona nana. Marine Biology 66, 185190.Google Scholar
Longhurst, A.R. (2007) Ecological geography of the sea. Amsterdam: Elsevier.Google Scholar
Louati, A., Elleuch, B., Kallel, A., Saliot, A., Dagaut, J. and Oudot, J. (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Marine Pollution Bulletin 42, 445452.Google Scholar
Mendes-Gusmão, L.F., McKinnon, A.D. and Richardson, A.J. (2013) No evidence of predation causing female-biased sex ratios in marine pelagic copepods. Marine Ecology Progress Series 482, 279298.Google Scholar
Moraitou-Apostolopoulou, M. (1976) Étude comparative du zooplancton superficiel (0–100 cm) à une zone hautement polluée et une autre relativement propre (Golfe Saronique – Grèce). Rapport Procès Verbal Réunion de la Commission International pour l'Exploration Scientifique de Méditerranée 23, 5960.Google Scholar
Moreira, G.S., Jillett, J.B., Vernberg, W.B. and Weinrich, M. (1982) The combined effects of temperature and salinity on the survival of Euterpina acutifrons (Dana) (Copepoda, Harpacticoida) from the New Zealand and Brazilian coasts. Journal of Plankton Research 4, 8591.Google Scholar
Moreira, G.S., Yamashita, C. and McNamara, J.C. (1983) Seasonal variation in abundance of the developmental stages of Euterpina acutifrons (Copepoda, Harpacticoida) from São Sebastião Channel, Southern Brazil. Marine Biology 74, 111114.Google Scholar
Neukermans, G., Ruddick, K., Loisel, H. and Roose, P. (2012) Optimization and quality control of suspended particulate matter concentration measurement using turbidity measurements. Limnology and Oceanography: Methods 10, 10111023.Google Scholar
Newton, A., Icely, J.D., Falcao, M., Nobre, A. and Nunes, J.P., Ferreira, J.G., Vale, C. (2003) Evaluation of eutrophication in the Ria Formosa coastal lagoon, Portugal. Continental Shelf Research 23, 19451961.Google Scholar
Nuccio, C., Melillo, C., Massi, L. and Innamorati, M. (2003) Phytoplankton abundance, community structure and diversity in eutrophycated Orbetello lagoon (Tuscany) from 1995 to 2001. Oceanologica Acta 26, 1525.Google Scholar
Paffenhöfer, G.A. (1993) On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). Journal of Plankton Research 15, 3755.Google Scholar
Papantoniou, G., Danielidis, D.B., Spyropoulou, A. and Ragopoulu, N. (2015) Spatial and temporal variability of small-sized copepod assemblages in a shallow semi-enclosed embayment (Kalloni Gulf, NE Mediterranean Sea). Journal of the Marine Biological Association of the United Kingdom 2, 349360.Google Scholar
Park, G.S. and Marshall, H.G. (2000) Estuarine relationships between zooplankton community structure and trophic gradients. Journal of Plankton Research 22, 121135.Google Scholar
Pascual, M. and Guichard, F. (2005) Criticality and disturbance in spatial ecological systems. Trends in Ecology and Evolution 20, 8895.Google Scholar
Pielou, E.C. (1966) The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13, 131144.Google Scholar
Raimbault, P., Diaz, F., Pouvesle, W. and Boudjellal, B. (1999) Simultaneous determination of particulate organic carbon, nitrogen and phosphorus collected on filters, using a semi- automatic wet-oxidation method. Marine Ecology Progress Series 180, 289295.Google Scholar
Raimbault, P., Lantoine, F. and Neveux, J. (2004) Dosage rapide de la chlorophylle-a et des phéopigments-a par fluorimétrie après extraction au méthanol. Comparaison avec la méthode classique d'extraction à l'acétone. Océanis 30, 189205.Google Scholar
Rekik, A., Denis, M., Maalej, S. and Ayadi, H. (2015) Spatial and seasonal variability of pico-, nano- and microphytoplankton at the bottom seawater in the north coast of Sfax, Eastern Mediterranean Sea. Environmental Science and Pollution Research 22, 1596115975.Google Scholar
Rekik, A., Drira, Z., Guermazi, W., Elloumi, J., Maalej, S., Aleya, L. and Ayadi, H. (2012) Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast. Marine Pollution Bulletin 64, 336346.Google Scholar
Rekik, A., Maalej, S., Ayadi, H. and Aleya, L. (2013) Restoration impact of an uncontrolled phosphogypsum dump site on the seasonal distribution of abiotic variables, phytoplankton and zooplankton along the near shore of the south-western Mediterranean coast. Environmental Science and Pollution Research 20, 37183734.Google Scholar
Riandey, V., Champalbert, G., Carlotti, F., Taupier-Letage, I. and Thibault-Botha, D. (2005) Zooplankton distribution related to the hydrodynamic features in the Algerian Basin (Western Mediterranean Sea) in summer 1997. Deep Sea Research Part I: Oceanographic Research Papers 52, 20292048.Google Scholar
Riccardi, N. and Mariotto, L. (2000) Seasonal variations in copepod body length: a comparison between different species in the lagoon of Venice. Aquatic Ecology 34, 243252.Google Scholar
Richardson, A.J. (2008) In hot water: zooplankton and climate change. Journal of Marine Science 65, 279295.Google Scholar
Rose, M. (1933) Copépodes pélagiques. Faune de la France, Volume 26. Paris: Le chevalier.Google Scholar
Rossi, N and Jamet, J.L. (2009) Structure and succession of plankton communities in two Mediterranean neighbouring coastal ecosystems (Toulon Bay, France) In Martorino, L. and Puopolo, K. (eds). New Oceanography Research Developments. Nova Science Publishers, 114.Google Scholar
Ruttenberg, B.I. and Granek, E.F. (2011) Bridging the marine–terrestrial disconnect to improve marine coastal zone science and management. Marine Ecology Progress Series 434, 203212.Google Scholar
Sampey, A., Mckinnon, A.D., Meekan, M.G. and McCormick, M.I. (2007) Glimpse into guts: overview of the feeding of larvae of tropical shorefishes. Marine Ecology Progress Series 339, 243257.Google Scholar
Sarkka, J., Levonen, L. and Mäkelä, J. (1998) Harpacticoid and cyclopoid fauna of ground water and springs in southern Finland. Journal of Marine Systems 15, 155161.Google Scholar
Serranito, B., Aubert, A., Stemmann, L., Rossi, N. and Jamet, J.L. (2016) Proposition of indicators of anthropogenic pressure in the Bay of Toulon (Mediterranean Sea) based on zooplankton time-series. Continental Shelf Research 121, 312.Google Scholar
Shannon, C.E. and Weaver, W. (1949) The mathematical theory of communication. Urbana, IL: University of Illinois Press.Google Scholar
Siokou-Frangou, I. (1996) Zooplankton annual cycle in a Mediterranean coastal area. Journal of Plankton Research 18, 203223.Google Scholar
Siokou-Frangou, I. and Papathanassiou, E. (1991) Differentiation of zooplankton populations in a polluted area. Marine Ecology Progress Series 76, 4151.Google Scholar
Sipkay, C., Kiss, K.T., Vadadi-Fülöp, C. and Hufnagel, L. (2009) Trends in research on the possible effects of climate change concerning aquatic ecosystems with special emphasis on the modeling approach. Applied Ecology and Environmental Research 17, 171198.Google Scholar
Sokal, R.R. and Rohlf, F.J. (1981) Biometry: the principles and practices of statistics in biological research, 2nd edition. New York, NY: Freeman and Company W.H.Google Scholar
Srichandan, S., Panda, C.R. and Rout, N.C. (2013) Seasonal distribution of zooplankton in Mahanadi estuary (Odisha), East Coast of India: a taxonomical approach. Zoological Research 9, 1731.Google Scholar
Stalder, L.C. and Marcus, N.H. (1997) Zooplankton responses to hypoxia: behavioral patterns and survival of three species of calanoid copepods. Marine Biology 127, 599607.Google Scholar
Tayibi, H., Choura, M., López, F.A., Alguacil, F.J. and López-Delgado, A. (2009) Environmental impact and management of phosphogypsum. Journal of Environmental Management 90, 23772386.Google Scholar
Ter-Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671179.Google Scholar
Tregouboff, G. and Rose, M. (1978a) Manuel de Planctologie Méditerranéenne. Tome I. Paris: CNRS.Google Scholar
Tregouboff, G. and Rose, M. (1978b) Manuel de Planctonologie Méditerranéenne. Tome II. Paris: CNRS.Google Scholar
Williams, J.A. and Muxagata, E. (2006) The seasonal abundance and production of Oithona nana (Copepoda: Cyclopoida) in Southampton Water. Journal of Plankton Research 28, 10551065.Google Scholar
Zaghden, H., Kallel, M., Louati, A., Elleuch, B., Oudot, J. and Saliot, A. (2005) Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea. Marine Pollution Bulletin 50, 287294.Google Scholar
Zaouali, J. (1993) Little Syrte benthic communities, Gulf of Gabès, Tunisia. Results of the survey campaign of July 1990. Preliminary study; biocenosis and recent thanatocenosis. Marine Life 3, 4760.Google Scholar
Ziadi, B., Dhib, A., Turki, S. and Aleya, L. (2015) Factors driving the seasonal distribution of zooplankton in a eutrophicated Mediterranean lagoon. Marine Pollution Bulletin 97, 224233.Google Scholar