Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T17:26:15.590Z Has data issue: false hasContentIssue false

A comparative analysis of canyon and non-canyon populations of the deep-sea scavenging amphipod Paralicella caperesca

Published online by Cambridge University Press:  21 December 2015

Grant A. Duffy*
Affiliation:
National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
Zoe R.S. Gutteridge
Affiliation:
National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
Michael H. Thurston
Affiliation:
National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
Tammy Horton
Affiliation:
National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
*
Correspondence should be addressed to:G.A. Duffy, School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia email: [email protected]

Abstract

Existing population studies of deep-sea amphipods have focused on species that inhabit deep-sea vent or trench environments but few cosmopolitan species have been studied. Here we provide new insight into the life history and population ecology of the pan-oceanic scavenging amphipod Paralicella caperesca and discuss the influence of nutrient-rich submarine canyon environments on the growth and reproduction of this species. Data were collected through the dissection and measurement of 2997 P. caperesca from 14 samples taken from abyssal plains, continental slopes and submarine canyons in the North-East Atlantic. Sexual dimorphism was less pronounced than observed for other scavenging amphipod species but females were significantly larger and had shorter antennae than males. The size of oostegites in female P. caperesca varied considerably within size classes, ovaries contained a relatively large number of oocytes, and no empty ovaries were observed. These factors, in combination with absence of mature females, suggest that P. caperesca practices semelparity, a reproductive strategy that complements the feeding strategy of this obligate necrophage. Five male and seven female size-grouped cohorts were identified for P. caperesca. Cohorts from deep-sea submarine canyon populations showed consistently larger mean total body lengths than non-canyon cohorts. Individuals from canyon samples also expressed sexual characteristics at smaller sizes than non-canyon individuals. We hypothesize that these trends are indicative of nutrient-mediated growth, maturation, and reproduction in P. caperesca. The species is able to grow and reproduce relatively quickly in response to increased nutrient input in canyon environments and therefore dominates scavenging amphipod assemblages.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arndt, C.E. and Beuchel, F. (2005) Life history and population dynamics of the Arctic sympagic amphipods Onisimus nanseni Sars and O. glacialis Sars (Gammaridea: Lysianassidae). Polar Biology 29, 239248. doi: 10.1007/s00300-005-0045-x. Google Scholar
Barnard, J.L. and Karaman, G.S. (1991) The families and genera of marine gammaridean Amphipoda (except marine gammaroidea). Part 2. Records of the Australian Museum, Supplement 13, 419866. doi: 10.3853/j.0812-7387.13.1991.367. CrossRefGoogle Scholar
Barnard, J.L. and Shulenberger, E. (1976) Clarification of the abyssal amphipod, Paralicella tenuipes Chevreux. Crustaceana 31, 267274. doi: 10.1163/156854076x00053. Google Scholar
Bellan-Santini, D. and Thurston, M.H. (1996) Amphipoda of the hydrothermal vents along the mid-Atlantic Ridge. Journal of Natural History 30, 685702. doi: 10.1080/00222939600770381. CrossRefGoogle Scholar
Blankenship, L.E., Yayanos, A.A., Cadien, D.B. and Levin, L.A. (2006) Vertical zonation patterns of scavenging amphipods from the Hadal zone of the Tonga and Kermadec Trenches. Deep Sea Research Part I: Oceanographic Research Papers 53, 4861. doi: 10.1016/j.dsr.2005.09.006. CrossRefGoogle Scholar
Bousfield, E.L. (2001) An updated commentary on phyletic classification of the amphipod Crustacea and its application to the North American fauna. Amphipacifica 3, 49119.Google Scholar
Bousfield, E.L. and Shih, C.T. (1994) The phyletic classification of amphipod crustaceans: problems in resolution. Amphipacifica 1, 76134.Google Scholar
Britton, J.C. and Morton, B. (1994) Marine carrion and scavengers. Oceanography and Marine Biology: an Annual Review 32, 369434.Google Scholar
Bucklin, A., Wilson, R.R. and Smith, K.L. (1987) Genetic differentiation of seamount and basin populations of the deep-sea amphipod Eurythenes gryllus . Deep Sea Research Part A: Oceanographic Research Papers 34, 17951810. doi: 10.1016/0198-0149(87)90054-9. Google Scholar
Bühring, S.I. and Christiansen, B. (2001) Lipids in selected abyssal benthopelagic animals: links to the epipelagic zone? Progress in Oceanography 50, 369382. doi: 10.1016/s0079-6611(01)00061-1. Google Scholar
Cassie, R.M. (1954) Some uses of probability paper in the analysis of size frequency distributions. Australian Journal of Marine and Freshwater Research 5, 513522. doi: 10.1071/MF9540513. Google Scholar
Chapelle, G. (1995) Estimating size of amphipods in life cycle studies: what to measure and what for? Polskie Archiwum Hydrobiologii 42, 295302.Google Scholar
Chevreux, E. (1899) Sur quelques intèressantes espèces d'amphipodes provenant de la dernière campagne du yacht Princesse Alice. Bulletin de la Societe Zoologique de France 24, 152158.Google Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143. doi: 10.1111/j.1442-9993.1993.tb00438.x. Google Scholar
Clarke, K.R. and Gorley, R.N. (2006) PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E.Google Scholar
Conlan, K.E. (1991) Precopulatory mating behavior and sexual dimorphism in the amphipod Crustacea. Hydrobiologia 223, 255282. doi: 10.1007/bf00047644. Google Scholar
Costa, A. (1851) Catalogo de crostacei del regno di Napoli. Anfipodi Gammaridi. Fauna Regno Napoli 7.Google Scholar
Cousins, N.J., Horton, T., Wigham, B.D. and Bagley, P.M. (2013) Abyssal scavenging demersal fauna at two areas of contrasting productivity on the Subantarctic Crozet Plateau, southern Indian Ocean. African Journal of Marine Science 35, 299306. doi: 10.2989/1814232X.2013.802747. Google Scholar
Dahl, E. (1979) Deep-sea carrion feeding amphipods: evolutionary patterns in niche adaptation. Oikos 33, 167. doi: 10.2307/3543994. Google Scholar
De Broyer, C., Lowry, J.K., Jażdżewski, K. and Robert, H. (2007) Catalogue of the Gammaridean and Corophiidean Amphipoda (Crustacea) of the Southern Ocean with distribution and ecological data. In De Broyer, C. (ed.) Census of Antarctic marine life. Synopsis of the Amphipoda of the Southern Ocean. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie 77, 1325.Google Scholar
De Broyer, C., Nyssen, F. and Dauby, P. (2004) The crustacean scavenger guild in Antarctic shelf, bathyal and abyssal communities. Deep Sea Research Part II: Topical Studies in Oceanography 51, 17331752. doi: 10.1016/j.dsr2.2004.06.032. CrossRefGoogle Scholar
De Broyer, C. and Thurston, M.H. (1987) New Atlantic material and redescription of the type specimens of the giant abyssal amphipod Alicella gigantea Chevreux (Crustacea). Zoologica Scripta 16, 335350.CrossRefGoogle Scholar
De Leo, F.C., Smith, C.R., Rowden, A.A., Bowden, D.A. and Clark, M.R. (2010) Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proceedings of the Royal Society B: Biological Sciences 277, 27832792. doi: 10.1098/rspb.2010.0462. CrossRefGoogle ScholarPubMed
Desbruyères, D., Geistdoerfer, P., Ingram, C.L., Khripounoff, A. and Lagardère, J.P. (1985) Répartition des populations de l’épibenthos carnivore. In Laubier, L. and Monniot, C. (eds) Peuplements profonds du golfe de Gascogne. Paris: IFREMER, pp. 233252.Google Scholar
Drazen, J.C. (2002) Energy budgets and feeding rates of Coryphaenoides acrolepis and C. armatus . Marine Biology 140, 677686. doi: 10.1007/s00227-001-0747-8. Google Scholar
d'Udekem d'Acoz, C. and Havermans, C. (2015) Contribution to the systematics of the genus Eurythenes S.I. Smith in Scudder, 1882: an integrative study (Crustacea: Amphipoda: Lysianassoidea: Eurytheneidae). Zootaxa 3971, 180. doi: 10.11646/zootaxa.3971.1.1. Google Scholar
Duffy, G.A., Horton, T. and Billett, D.S.M. (2012) Deep-sea scavenging amphipod assemblages from the submarine canyons of the Western Iberian Peninsula. Biogeosciences 9, 48614869. doi: 10.5194/bg-9-4861-2012. Google Scholar
Duffy, G.A., Horton, T., Sheader, M. and Thurston, M.H. (2013) Population structure of Abyssorchomene abyssorum (Stebbing, 1888) (Amphipoda: Lysianassoidea), a scavenging amphipod from the Mid-Atlantic Ridge in the vicinity of the Charlie-Gibbs Fracture Zone. Deep Sea Research Part II: Topical Studies in Oceanography 98, 360369. doi: 10.1016/j.dsr2.2013.02.004. Google Scholar
Eustace, R.M., Kilgallen, N.M., Lacey, N.C. and Jamieson, A.J. (2013) Population structure of the hadal amphipod Hirondellea gigas (Amphipoda: Lysianassoidea) from the Izu-Bonin Trench. Journal of Crustacean Biology 33, 793801. doi: 10.1163/1937240X-00002193. Google Scholar
Fritz, R.S., Stamp, N.E. and Halverson, T.G. (1982) Iteroparity and semelparity in insects. American Naturalist 120, 264. doi: 10.1086/283987. Google Scholar
Fujii, T., Kilgallen, N.M., Rowden, A.A. and Jamieson, A.J. (2013) Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches. Marine Ecology Progress Series 492, 125138. doi: 10.3354/meps10489. Google Scholar
Harding, J.P. (2009) The use of probability paper for the graphical analysis of polymodal frequency distributions. Journal of the Marine Biological Association of the United Kingdom 28, 141. doi: 10.1017/S0025315400055259. CrossRefGoogle Scholar
Hasegawa, M., Kurohiji, Y., Takayanagi, S., Sawadaishi, S. and Yao, M. (1986) Collection of fish and Amphipoda from abyssal sea-floor at 30 °N – 147 °E using traps tied to 10000 m wire of research vessel. Bulletin of Tokai Regional Fisheries Research Laboratory 119, 6575.Google Scholar
Havermans, C., Sonet, G., d'Udekem d'Acoz, C., Nagy, Z.T., Martin, P., Brix, S., Riehl, T., Agrawal, H. and Held, C. (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8, e74218e74215. doi: 10.1371/journal.pone.0074218. Google Scholar
Hendrycks, E.A. and Conlan, K.E. (2003) New and unusual abyssal gammaridean Amphipoda from the north-east Pacific. Journal of Natural History 37, 23032368. doi: 10.1080/00222930210138926. Google Scholar
Hendrycks, E.A., De Broyer, C. and Havermans, C. (2010) Preliminary notes on baited trap amphipods from the DIVA-3 cruise. In Paper presented at XIVth International Colloquium on Amphipoda. Sevilla, Spain. http://hdl.handle.net/2078/121215.Google Scholar
Higgs, N.D., Gates, A.R. and Jones, D.O.B. (2014) Fish food in the deep sea: revisiting the role of large food-falls. PLoS ONE 9, e96016. doi: 10.1371/journal.pone.0096016.s006. CrossRefGoogle ScholarPubMed
Highsmith, R.C. and Coyle, K.O. (1991) Amphipod life histories: community structure, impact of temperature on decoupled growth and maturation rates, productivity, and P: B ratios. American Zoologist 31, 861873. doi: 10.1093/icb/31.6.861. Google Scholar
Horton, T., Thurston, M.H. and Duffy, G.A. (2013) Community composition of scavenging amphipods at bathyal depths on the Mid-Atlantic Ridge. Deep Sea Research Part II: Topical Studies in Oceanography 98, 352359. doi: 10.1016/j.dsr2.2013.01.032. Google Scholar
Ingram, C.L. and Hessler, R.R. (1983) Distribution and behavior of scavenging amphipods from the central North Pacific. Deep Sea Research Part A: Oceanographic Research Papers 30, 683706. doi: 10.1016/0198-0149(83)90017-1. Google Scholar
Ingram, C.L. and Hessler, R.R. (1987) Population biology of the deep-sea amphipod Eurythenes gryllus: inferences from instar analyses. Deep Sea Research Part A: Oceanographic Research Papers 34, 18891910. doi: 10.1016/0198-0149(87)90090-2. Google Scholar
Jamieson, A.J., Fujii, T., Solan, M., Matsumoto, A.K., Bagle, P.M. and Priede, I.G. (2009) First findings of decapod crustacea in the hadal zone. Deep Sea Research Part I: Oceanographic Research Papers 56, 641647. doi: 10.1016/j.dsr.2008.11.003. Google Scholar
Jamieson, A.J., Kilgallen, N.M., Rowden, A.A., Fujii, T., Horton, T., Lörz, A.N., Kitazawad, K. and Priede, I.G. (2011) Bait-attending fauna of the Kermadec Trench, SW Pacific Ocean Evidence for an ecotone across the abyssal–hadal transition zone. Deep Sea Research Part I: Oceanographic Research Papers 58, 4962. doi: 10.1016/j.dsr.2010.11.003. CrossRefGoogle Scholar
Janßen, F., Treude, T. and Witte, U. (2000) Scavenger assemblages under differing trophic conditions: a case study in the deep Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography 47, 29993026. doi: 10.1016/s0967-0645(00)00056-4. Google Scholar
Jones, E.G., Collins, M.A., Bagley, P.M., Addison, S. and Priede, I.G. (1998) The fate of cetacean carcasses in the deep sea: observations on consumption rates and succession of scavenging species in the abyssal north-east. Atlantic Ocean 265, 11191127. doi: 10.1098/rspb.1998.0407. Google Scholar
Kaïm-Malka, R.A. (2003) Biology and life cycle of Scopelocheirus hopei (A. Costa, 1851), a scavenging amphipod from the continental slope of the Mediterranean. Journal of Natural History 37, 25472578. doi: 10.1080/00222930210155693. Google Scholar
Kaïm-Malka, R.A. (2004) Oostegite development during the sexual maturation of females of Tmetonyx similis (G. O. Sars, 1891) (Amphipoda, Lysianassidae). Journal of Natural History 38, 24032424. doi: 10.1080/00222930310001647398. Google Scholar
Kaïm-Malka, R.A. (2005) Biology and life cycle of Tmetonyx similis (G. O. Sars, 1891) (Amphipoda, Lysianassidae), a scavenging amphipod from the continental slope of the Mediterranean. Journal of Natural History 39, 31633186. doi: 10.1080/00222930500240502. Google Scholar
Kaufmann, R.S. (1994) Structure and function of chemoreceptors in scavenging lysianassoid amphipods. Journal of Crustacean Biology 14, 54. doi: 10.2307/1549055. Google Scholar
Lampitt, R.S., Merrett, N.R. and Thurston, M.H. (1983) Inter-relations of necrophagous amphipods, a fish predator, and tidal currents in the deep sea. Marine Biology 74, 7378. doi: 10.1007/BF00394277. CrossRefGoogle Scholar
Lichtenstein, H. (1822) Observationes in historiam naturalem et anatomiam comparatam. In Mandt, M.W. (ed.) Itinere Groenlandico factae. Berlin: Formis Brueschckianis, pp. 3137.Google Scholar
Liljeborg, V. (1852) Norges Crustacéer. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar 8, 1925.Google Scholar
Lincoln, R.J. (1979) British Marine Amphipoda: Gammaridea. London: British Museum (Natural History).Google Scholar
Macdonald, A.G. and Gilchrist, I. (1980) Effects of hydraulic decompression and compression on deep-sea amphipods. Comparative Biochemistry and Physiology Part A: Physiology 67, 149153. doi: 10.1016/0300-9629(80)90420-X. CrossRefGoogle Scholar
Macdonald, A.G. and Gilchrist, I. (1982) The pressure tolerance of deep sea amphipods collected at their ambient high pressure. Comparative Biochemistry and Physiology Part A: Physiology 71, 349352. doi: 10.1016/0300-9629(82)90415-7. CrossRefGoogle Scholar
Macdonald, P.D.M. and Du, J. (2011) mixdist: Finite Mixture Distribution Models. R package version 0.5-4. http://CRAN.Rproject.org/package=mixdist.Google Scholar
Macdonald, P.D.M. and Pitcher, T.J. (1979) Age-groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. Journal of the Fisheries Research Board of Canada 36, 9871001. doi: 10.1139/f79-137. Google Scholar
Maranhão, P. and Marques, J.C. (2003) The influence of temperature and salinity on the duration of embryonic development, fecundity and growth of the amphipod Echinogammarus marinus Leach (Gammaridae). Acta Oecologica 24, 513. doi: 10.1016/S1146-609X(02)00003-6. CrossRefGoogle Scholar
Nygård, H., Vihtakari, M. and Berge, J. (2009) Life history of Onisimus caricus (Amphipoda: Lysianassoidea) in a high Arctic fjord. Aquatic Biology 5, 6374. doi: 10.3354/ab00142. Google Scholar
Panov, V.E. and McQueen, D.J. (1998) Effects of temperature on individual growth rate and body size of a freshwater amphipod. Canadian Journal of Zoology 76, 11071116. doi: 10.1139/cjz-76-6-1107. Google Scholar
Payne, L.X. and Moore, J.W. (2006) Mobile scavengers create hotspots of freshwater productivity. Oikos 115, 6980. Google Scholar
Perrone, F.M., Dell'Anno, A., Danovaro, R., Della Croce, N. and Thurston, M.H. (2002) Population biology of Hirondellea sp. nov. (Amphipoda: Gammaridea: Lysianassoidea) from the Atacama Trench (south-east Pacific Ocean). Journal of the Marine Biological Association of the United Kingdom 82, 419425. doi: 10.1017/S0025315402005672. Google Scholar
Pöckl, M. (1992) Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli . Freshwater Biology 27, 211225. doi: 10.1111/j.1365-2427.1992.tb00534.x. Google Scholar
Premke, K., Klages, M. and Arntz, W.E. (2006) Aggregations of Arctic deep-sea scavengers at large food falls: temporal distribution, consumption rates and population structure. Marine Ecology Progress Series 325, 121135.Google Scholar
R Development Core Team. (2015) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Sainte-Marie, B. (1991) A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223, 189227. doi: 10.1007/978-94-011-3542-9_19. Google Scholar
Sars, G.O. (1891) An account of the Crustacea of Norway with short descriptions and figures of all the species. Volume 1, Amphipoda, Parts 4–9. Copenhagen: A Cammermeyer, pp. 69212.Google Scholar
Sheader, M. (1983) The reproductive biology and ecology of Gammarus duebeni (Crustacea: Amphipoda) in southern England. Journal of the Marine Biological Association of the United Kingdom 63, 517. doi: 10.1017/s0025315400070855. Google Scholar
Sheader, M. and Van Dover, C.L. (2007) Temporal and spatial variation in the reproductive ecology of the vent-endemic amphipod Ventiella sulfuris in the eastern Pacific. Marine Ecology Progress Series 331, 181194.Google Scholar
Sheader, M., Van Dover, C.L. and Shank, T.M. (2000) Structure and function of Halice hesmonectes (Amphipoda: Pardaliscidae) swarms from hydrothermal vents in the eastern Pacific. Marine Biology 136, 901911. doi: 10.1007/s002270000300. Google Scholar
Sheader, M., Van Dover, C.L. and Thurston, M.H. (2004) Reproductive ecology of Bouvierella curtirama (Amphipoda: Eusiridae) from chemically distinct vents in the Lucky Strike vent field, Mid-Atlantic Ridge. Marine Biology 144, 503514. doi: 10.1007/s00227-003-1211-8. Google Scholar
Shulenberger, E. and Barnard, J.L. (1976) Amphipods from an abyssal trap set in the North Pacific Gyre. Crustaceana 31, 241258. doi: 10.1163/156854076x00035. Google Scholar
Shulenberger, E. and Hessler, R.R. (1974) Scavenging abyssal benthic amphipods trapped under oligotrophic central North Pacific Gyre waters. Marine Biology 28, 185187. doi: 10.1007/bf00387296. Google Scholar
Smith, K.L. and Baldwin, R. J. (1982) Scavenging deep-sea amphipods – effects of food odor on oxygen-consumption and a proposed metabolic strategy. Marine Biology 68, 287298. doi: 10.1007/BF00409595. CrossRefGoogle Scholar
Soliman, Y.S. and Rowe, G.T. (2008) Secondary production of Ampelisca mississippiana Soliman and Wicksten 2007 (Amphipoda, Crustacea) in the head of the Mississippi Canyon, northern Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography 55, 26922698. doi: 10.1016/j.dsr2.2008.07.019. CrossRefGoogle Scholar
Stebbing, T.R.R. (1888) Report on the Amphipoda collected by H.M.S. Challenger during the years 1873–76. Report on the scientific results of the voyage of H.M.S. challenger during the years during the years 1873–76. Zoology 29, 1737.Google Scholar
Steele, D.H. (1995) Sexual dimorphism in mature gammaridean amphipods. Polskie Archiwum Hydrobiologii 4, 303317.Google Scholar
Stockton, W.L. and DeLaca, T.E. (1982) Food falls in the deep sea: occurrence, quality, and significance. Deep Sea Research Part A: Oceanographic Research Papers 29, 157169. doi: 10.1016/0198-0149(82)90106-6. Google Scholar
Stoddart, H.E. and Lowry, J.K. (2004) The deep-sea lysianassoid genus Eurythenes (Crustacea, Amphipoda, Eurytheneidae n. fam.). Zoosystema 26, 425468.Google Scholar
Sutcliffe, D.W., Carrick, T.R. and Willoughby, L.G. (1981) Effects of diet, body size, age and temperature on growth-rates in the amphipod Gammarus pulex . Freshwater Biology 11, 183214. doi: 10.1111/j.1365-2427.1981.tb01252.x. Google Scholar
Thurston, M.H. (1979) Scavenging abyssal amphipods from the North-East Atlantic Ocean. Marine Biology 51, 5568. doi: 10.1007/BF00389031. Google Scholar
Thurston, M.H. (1990) Abyssal necrophagous amphipods (Crustacea, Amphipoda) in the Northeast and Tropical Atlantic-Ocean. Progress in Oceanography 24, 257274. doi: 10.1016/0079-6611(90)90036-2. Google Scholar
Thurston, M.H., Petrillo, M. and Della Croce, N. (2002) Population structure of the necrophagous amphipod Eurythenes gryllus (Amphipoda: Gammaridea) from the Atacama Trench (south-east Pacific Ocean). Journal of the Marine Biological Association of the United Kingdom 8, 205211. doi: 10.1017/s0025315402005374. CrossRefGoogle Scholar
Treude, T., Janssen, F., Queisser, W. and Witte, U. (2002) Metabolism and decompression tolerance of scavenging lysianassoid deep-sea amphipods. Deep Sea Research Part I: Oceanographic Research Papers 49, 12811289.Google Scholar
van Oevelen, D., Soetaert, K., García, R., de Stigter, H.C., Cunha, M.R., Pusceddu, A. and Danovaro, R. (2011) Canyon conditions impact carbon flows in food webs of three sections of the Nazaré canyon. Deep Sea Research Part II: Topical Studies in Oceanography 58, 24612476. doi: 10.1016/j.dsr2.2011.04.009. Google Scholar
Vetter, E.W. (1995) Detritus-based patches of high secondary production in the nearshore benthos. Marine Ecology Progress Series 120, 251262. doi: 10.3354/meps120251. Google Scholar
Weaver, P. and Gunn, V. (2009) HERMES: Hotspot ecosystem research on the margins of European Seas. Oceanography 22, 1215. doi: 10.5670/oceanog.2009.01. Google Scholar
Wilson, R.R., Smith, K.L. and Rosenblatt, R.H. (1985) Megafauna associated with bathyal seamounts in the central North Pacific-Ocean. Deep Sea Research Part A: Oceanographic Research Papers 32, 12431254. doi: 10.1016/0198-0149(85)90007-X. Google Scholar
Yayanos, A.A. (1981) Reversible inactivation of deep-sea amphipods (Paralicella capresca) by a decompression from 601 bars to atmospheric-pressure. Comparative Biochemistry and Physiology Part A: Physiology 69, 563565. doi: 10.1016/0300-9629(81)93020-6.Google Scholar