Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T12:53:10.041Z Has data issue: false hasContentIssue false

The Colours of Ophiocomina Nigra (Abildgaard): II. The Occurrence of Melanin and Fluorescent Pigments

Published online by Cambridge University Press:  11 May 2009

A. R. Fontaine
Affiliation:
Department of Zoology and Comparative Anatomy, Oxfordcor1corresp
*

Extract

The ophiuroid, Ophiocomina nigra, displays a colour variation ranging from black to yellow-orange. The pigment responsible for the dark colours has been studied histochemically and by means of chemical techniques applied to extracts. The solubility, oxidation-reduction, fluorescence and other chemical properties of this pigment indicate that it is a true melanin. The visible colour of die melanin depends upon its oxidation state in the integument. Fully oxidized pigment is dark brown; partially reduced pigment is fawn coloured.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, E., 1941. Die Pigmente der Ommin- und Ommatin-gruppe, eine neue Klasse von Naturfarbstoffen. Naturwissenschaften, Bd. 29, pp. 237–8.CrossRefGoogle Scholar
Becker, E., 1942. Uber Eigenschaften, Verbreitung und die genetisch-entwicklungsphysiologische Bedeutung der Pigmente der Ommatin- und Ommingruppe (Ommochrome) bei den Arthropoden. Z. indukt. Abstamm.- u. VererbLehre, Bd. 80, pp. 157204.Google Scholar
Busnel, R. G., 1942. Sur la polychromie du mélanocyte chez les Vertébrés: relations avec vitamine B2 et les substances ´ fluorescence bleu. C.R. Acad. Sci., Paris, T. 214, P. 189.Google Scholar
Busnel, R. G. & Drilhon, A., 1948. Sur les pigments flaviniques et ptériniques des Crustacés. Bull. soc. zool. Fr, T. 73, pp. 141–85.Google Scholar
Butenandt, A., Schiedt, U. & Biekert, E., 1954. Über Ommochrome. I. Mitteilung: Isolierung von Xanthommatin, Rhodommatin, und Ommatin C aus den Schlupfsekreten von Vanessa urticae. Liebigs Ann, Bd. 586, pp. 217–28.CrossRefGoogle Scholar
Eeckelen, M. v. & Emmerie, A., 1935. The quantitative determination of hepaflavine (Vitamin B2). Acta brev. neerl. Physiol, Vol. 5, pp. 77–8.Google Scholar
Figge, F. H. J., 1939. Melanin: a natural reversible oxidation-reduction system and indicator. Proc. Soc. exp. Biol., N. Y, Vol. 41, p. 127.CrossRefGoogle Scholar
Figge, F. H. J., 1940. Squid melanin: a naturally occurring reversibly oxidizable pigment. Proc. Soc. exp. Biol., N. Y, Vol. 44, pp. 293–4.CrossRefGoogle Scholar
Fontaine, A. R., 1962. The colours of Ophiocomina nigra (Abildgaard). I. Colour variation and its relation to distribution. J. mar. biol. Ass. U.K, Vol. 42, pp. 18.CrossRefGoogle Scholar
Fontaine, M. & Busnel, R. G., 1937. De la localisation et de la nature de la flavine contenues dans la peau de l'Anguille. C.R. Acad. Sci., Paris, T. 204, pp. 1591–2.Google Scholar
Fontaine, M. & Busnel, R. G., 1938. Sur la localisation et la rô1e de la flavine ou d'un corps voisin de la flavine dans la peau des Poissons. C.R. Acad, Sci., Paris, T. 206, pp. 372–4.Google Scholar
Forrest, H. S., 1959. The Ommochromes: in Pigment Cell Biology (Gordon, Myron, editor). New York: Academic Press.CrossRefGoogle Scholar
Fox, D. L., 1953. Animal Biochromes and Structural Colours. Cambridge University Press.Google Scholar
Fox, D. L. & Pantin, C. F. A., 1941. The colours of the plumose anemone, Metridium senile L. Phil. Trans B, Vol. 230, pp. 415–50.Google Scholar
Fox, D. L. & Scheer, B. T., 1941. Comparative studies of the pigments of some Pacific coast echinoderms. Biol. Bull., Woods Hole, Vol. 80, pp. 441–55.CrossRefGoogle Scholar
Galston, A. W. & Baker, R. S., 1949. Inactivation of enzymes by visible light in the presence of riboflavin. Science, Vol. 109, pp. 485–6.CrossRefGoogle ScholarPubMed
Gates, M., 1947. The chemistry of the pteridines. Chem. Rev, Vol. 41, pp. 6396.CrossRefGoogle ScholarPubMed
Goodwin, T. W. & Srisukh, S., 1950. Biochemistry of locusts. 3. Insectorubin: the redox pigment present in the integument and eyes of the desert locust (Schistocerca gregaria Forsk.), the African migratory locust (Locusta migratoria migratorioides R. and F.) and other insects. Biochem. J, Vol. 47, pp. 549–54.CrossRefGoogle Scholar
Gordon, M., editor, 1953. Pigment Cell Growth. (Proceedings of the Third Conference on the Biology of Normal and Atypical Pigment Cell Growth.) New York: Academic Press.Google Scholar
Görnitz, K., 1923. Versuch einer Klassifikation der häufigsten Federfärbungen. J. Orn., Lpz, Bd. 71, pp. 127–31.Google Scholar
Hamann, O., 1889. Beiträge zur Histologie der Echinodermen. Hft. 4. Anatomie und Histologie der Ophiuren und Crinoiden. Jena: Gustav Fischer.Google Scholar
Isaka, S., 1952. Inhibitory effect of xanthopterin upon the formation of melanin in vitro. Nature, Lond, Vol. 169, p. 74.CrossRefGoogle ScholarPubMed
Jacobson, F. W. & Millott, N., 1953. Phenolases and melanogenesis in the coelomic fluid of the echinoid, Diadema antillarum (Philippi). Proc. roy. Soc. B, Vol. 141, pp. 231–47.Google Scholar
Lea, A. J., 1945. A neutral solvent for melanin. Nature, Lond, Vol. 156, p. 478.CrossRefGoogle Scholar
Lea, A. J., 1954. Estimation of the amount of pigment present in human hair. Ann. hum. Genet, Vol. 19, pp. 97–9.CrossRefGoogle ScholarPubMed
Lison, L., 1953. Histochimie et Cytochimie Animales. Paris: Gauthier-Villars.Google Scholar
Millott, N., 1950. Integumentary pigmentation and the coelomic fluid of Thyone briareus (Leseuer). Biol. Bull., Woods Hole, Vol. 99, pp. 343–4.Google Scholar
Millott, N., 1953. Observations on the skin pigment and amoebocytes, and the occurrence of phenolases in the coelomic fluid of Holothuria forskali Delle Chiaje. J. mar. biol. Ass. U.K, Vol. 31, pp. 529–39.CrossRefGoogle Scholar
Millott, N., 1954. Sensitivity to light and the reactions to changes in light intensity of the echinoid, Diadema antillarum (Philippi). Phil. Trans. B, Vol. 238, pp. 187220.Google Scholar
Millott, N. & Jacobson, F. W., 1952 a. Uber Melaninbildung bei neideren Organismen. Z: Haut- u. Geschlechtskr, Bd. 13, pp. 298302.Google Scholar
Millott, N., 1952 b. The occurrence of melanin in the sea urchin, Diadema antillarum (Philippi). J. invest. Derm, Vol. 18, pp. 91–5.CrossRefGoogle ScholarPubMed
Nickerson, M., 1946. Relation between black and red melanin pigments in feathers. Physiol. Zoöl, Vol. 19, pp. 6677.CrossRefGoogle ScholarPubMed
Pearse, A. G. E., 1954. Histochemistry—Theoretical and Applied. London: Churchill.Google Scholar
Polonovski, M., Bushel, R.-G. & Baril, A., 1950. Rô1e d'un pigment ptérinique, la fluorescyanine, dans la mélanogénèse. C.R. Acad. Set., Paris, T. 231, p. 1572–3.Google Scholar
Reichensperger, A., 1908. Die Drüsengebilde der Ophiuren. Z. wiss. Zool, Bd. 91, pp. 304–50.Google Scholar
Roth, H., 1950. Weiterentwicklung der Lumiflavin—Methode zur fluorometrischen Bestimmung des Vitamine B2 in Pflanzen. Biochem. Z, Bd. 320, pp. 355–8.Google Scholar
Sebrell, W. H. JR. & Harris, R. S., editors, 1954. The Vitamins—Chemistry, Physiology and Pathology. New York: Academic Press.CrossRefGoogle Scholar
Taft, E. B., 1949. Melanin solubility in tissue sections. Nature, Lond, Vol. 164, p. 1133.CrossRefGoogle ScholarPubMed
Verne, J., 1926. Les Pigments dans I'Organisme Animal. Paris: Gaston Doin.Google Scholar
Verne, J. & Busnel, R. G., 1942. Demonstration, par la culture in vitro, de l'existence d'une liaison entre le melanocyte, la riboflavine (vitamin B2), et les substances a fluorescence bleue chez les Vertebras inferieurs. C.R. Acad. Sci., Paris, T. 136, p. 164.Google Scholar
Yoshida, M., 1956. On the light response of the chromatophore of the sea urchin, Diadema setosum (Leske). J. exp. Biol, Vol. 33, pp. 119–23.CrossRefGoogle Scholar
Ziegler-Günder, I., 1956. Pterine: Pigmente und Wirkstoffe im Tierreich. Biol. Rev, Vol. 31, pp. 313–48.CrossRefGoogle Scholar